

Available online at <u>www.sinjas.journals.ekb.eg</u>

SCREENED BY SINAI Journal of Applied Sciences / iThenticate* Print ISSN 2314-607

 Print ISSN
 2314-6079

 Online ISSN
 2682-3527

INFLUENCE OF NITROGEN AND POTASSIUM FERTILIZERS RATE COMBINED WITH SALICYLIC ACID ON GROWTH, YIELD AND QUALITY OF HOT PEPPER CV. "CHAMPION"

Ahmed A.M. Mohsen^{*}

Dept. Hort. (Olericulture), Fac. Agric., Zagazig Univ., Egypt.

ARTICLE INFO

ABSTRACT

Article history: Received: 16/09/2021 Revised: 20/09/2021 Accepted: 11/10/2021 Available online: 11/10/2021 Keywords: Hot pepper, Nitrogen, Potassium, Salicylic acid,

growth.

In order to investigate the influence of nitrogenous and potassium fertilizer's rates (0.0, 50, 75 and 100% of recommended rate), salicylic acid concentration (0.0, 50 and 100 ppm) and their interactions on hot pepper plants cv. Champion, a field experiment was assessed. The NK recommended rate (RR) as equivalency for planting area was 90 and 76 kg of N and K_2O /feddan, respectively. This experiment was set up in a split-plot design with three replicates and conducted in Agric. Res. Farm, Fac. Agric., Zagazig Univ., Egypt during the two consecutive summer seasons of 2019 and 2020. Results referred to the positive influence of nitrogen and potassium fertilization rate on hot pepper plants growth parameters *i.e.* plant height, number of branches per plant, stem diameter as well as fresh and dry weights of plant, which increased as the NK fertilization rate increased in comparison with control. Increasing nitrogen and potassium fertilization rate gradually increased fruit yield components and its quality as well as capsiacine content. In addition, salicylic acid at 100 ppm gave the maximum values in plant growth parameters and yield components of hot pepper plants compared to control. The best values regard early and total fruit yield as well as total soluble solids, total chlorophyll content and vitamin C were achieved by supplying 50 and 100 ppm salicylic acid compared to control (sprayed with normal water).

INTRODUCTION

Hot pepper (Capsicum annuum, L.) is a marketable crop among the people for its nutritional and medicinal values: in addition, the extract of hot pepper is used in a number of pharmaceutical products. It belongs to the family Solanaceae and has a major profitable value (Malik, 1994). It is a substantial vegetable crop worldwide in terms of both trade amount and the turn it plays in the local economy (Aktas et al., 2009; Gonzalez-Diaz et al., 2009). Moreover, Bose et al. (1993) reported that, hot pepper supplies the human body with vitamins such as vitamin A and vitamin C. several of mineral nutrients and some protein compounds.

Nitrogen plays a major role in several physiological and biochemical processes in plants such as division and elongation of plant cells as well as carbohydrates and protein metabolism compounds (Marschner, 1995). In addition, Wiedenhoeft (2006) that, nitrogen (N) pointed out and potassium (K) elements are predominantly classified as main macronutrients, because its insufficiency is more common than the secondary macronutrients as calcium (Ca), magnesium (Mg) and sulphur (S). K affects the function and rates of enzymes involved in the carbohydrates biosynthesis (Hafsi et al., 2015). It was found that nitrogen and potassium fertilization enhanced sweet pepper growth, yield and fruit quality (Aminifard et al., 2012), Gynura procumbens

^{*} Corresponding author: E-mail address: enashamed88@gmail.com https://doi.org/10.21608/SINJAS.2021.108025.1070

^{© 2021} SINAI Journal of Applied Sciences. Published by Fac. Environ. Agric. Sci., Arish Univ. All rights reserved.

growth pattern (**Bukhori** *et al.*, 2015), hot pepper growth, yield and chemical composition (Ayodele *et al.*, 2015), canola yield and its quality (Eledfawy, 2017) and sweet pepper growth and yield (Alkharpotly, 2018).

Salicylic acid (SA) was obtained from Latin word "Salix", meaning Salix safsaf tree. It is ubiquitously spread in the whole plant kingdom and is distributed under the collection of plant hormones (Raskin et al., **1990**). Salicylic acid functions an animated role in plant growth, ion transport and uptake. It can also play a considerable role in plant photosynthesis, water relations and plant growth (Arfan et al., 2007). Abou El-Yazied (2011)reported that, foliar application of SA improved growth and productivity of sweet pepper. Also, Kazemi (2013) pointed out that, SA treatment increased the growth, yield and fruit quality in strawberry plants.

Therefore, this study aimed to notice the profitable influences of foliar spraying of salicylic acid combined with nitrogenous and potassium fertilization in terms of enhanced growth, productivity and fruit quality of hot pepper (*Capsicum annuum*, L.) cv. "Champion" under Sharkia Governorate conditions, Egypt.

MATERIALS AND METHODS

This experiment was executed successfully during the two consecutive summer seasons of 2019 and 2020 at the Experimental Farm (Ghazala Farm), Faculty of Agriculture, Zagazig University, Egypt. This study was carried out to investigate the influence of different rates of NK fertilization [0.0, 50, 75 and 100% of recommended rate (RR)], different salicylic acid concentrations (tap water was sprayed as control, 50 and 100 ppm) as well as their combinations on plant growth and yield components as well as photosynthetic pigments, some chemical contents and capsiacine content of hot pepper plants (*Capsicum annuum*, L.) cv. Champion. The recommended rate (RR) equivalency for planting area was 90 and 76 kg/feddan of N and K₂O, respectively.

Plant Material

The hot pepper seedlings were obtained from a privet nursery in Belbas District, Sharkia Governorate, Egypt. All hot pepper seedlings were comparable in growth and were about 10-12 cm in length. Hot pepper seedlings were transplanted in the experimental plots on 26th April and 4th May during the 1st and 2nd seasons, respectively.

Cultivation

The experimental unit area $(4 \times 3.5 \text{ m})$ was consisted of 5 ridges, with 70 cm among them. The hot pepper seedlings were transplanted at 50 cm distance between transplants, 8 transplants per ridge. The irrigation system was surface irrigation type. The physical and chemical analyses of soil site are tabulated in Table 1 as described by **Chapman and Pratt (1978)**.

Fertilization

The recommended rate (RR) of NK was 90 and 76 kg/feddan of N and K₂O, respectively. The source of nitrogen was 439 kg/feddan of ammonium sulphate (20.5% N) and potassium was 156.70 kg/ feddan of potassium sulphate (48.5% K₂O), also, phosphorus was 200 kg/feddan of calcium superphosphate (15.5% P₂O₅). All amount of P fertilizer was added during soil preparation. While N and K fertilizers were divided into 4 equal doses and were applied to the soil at 30, 50, 70 and 90 days after transplanting.

Salicylic Acid Source and Application

The source of salicylic acid (SA) acid $(C_7H_6O_3)$ was Techno Gene Company, Dokky, Giza, Egypt. The different concentrations of SA as foliar application were applied at 30, 45 and 60 days after

	Physical analysis Soil texture											
Cla	ay (%)	Silt (%)	Fir	ne sand (%	ó)	Co	l (%)		1000	x 7		
5	6.36	9.26		17.62			16.76			– Clayey		
Chemical analysis												
pH "	E.C. 1.mohs/cm	Organic matter		Soluble cations (meq./L)		Se	oluble and (meq./L		Ay	vaila (ppn		
- m.mons/cm	1.1110115/C111	(%)	Mg ⁺⁺	Ca ⁺⁺	Na^+	Cl	HCO ₃ -	$SO_4^{}$	Ν	Р	Κ	
									18			

Table 1. Some physical and chemical properties of the experimental soil (average of two seasons)

transplanting date. Each experimental unit received five liters solution utilizing spreading agent (Super Film at a rate of 1 ml /l). The unsprayed control plants were sprayed with tap water with spreading agent. Also, all ordinary agricultural practices of growing hot pepper plants were done whenever necessitated.

Experimental Design

This experiment was set up in a split-plot design with three replicates. The main plots were occupied by four the NK rates. The sub plots were entitled to the three salicylic acid concentrations. The combination treatments between NK fertilization rates and salicylic acid concentrations were 12 treatments.

Sampling and Collecting Data

Plant growth parameters

After 100 days from hot pepper transplanting, 3 plants were randomly chosen from each plot to determine the following parameters: Plant height (cm), number of branches/plant, stem diameter (cm) at plant base as well as total fresh and dry weights / plant (g).

Yield and its components

Fruits of hot pepper were harvested every 2 days intervals, upon reaching 11-13 cm length. At harvesting stage, the yield components expressed as fruit set percentage (number of set flowers/total number of flowers marked \times 100), fruit number per plant, fruit length (cm), fruit diameter (cm), fruit yield/plant (kg), [early fruit yield per feddan (ton) was recorded after135 days after transplanting date] and yield/feddan (ton) were recorded.

Chemical constituents

Total soluble solids (TSS) of hot pepper fruit juice (Brix°): It was determined by utilizing a hand refractometer as Brix degree at the harvest stage. In addition, leaf total chlorophyll content (SPAD unit) was determined in hot pepper fresh leaves after 100 days from transplanting date by utilizing SPAD- 502 meter (Markwell et al., 1995). Vitamin C was determined as milligram l ascorbic acid per 100g of fresh fruits according to the method described by AOAC (1990). Vitamin C was defined by titration in the presence of 2, 6 dichlorophenol-indophenol dyes as an indicator against 2% oxalic acid solution as substrate. Moreover, hot pepper fruit total capsiacine content (mg/100 g as dry weight) was determined under the second season only by the method of Anan et al. (1996).

Statistical Analysis

The statistical layout of this experiment was split-plot experiment in completely randomized block design. Data were analyzed as stated by **Gomez and Gomez** (1984). The means were compared utilizing computer program of Statistix version 9 (Analytical Software, 2008).

RESULTS AND DISCUSSION

Influence of Nitrogen and Potassium Fertilizers Rate, Salicylic Acid Concentrations and Their Combinations on Plant Growth Parameters

Results presented in Tables 2 and 3 indicate that, hot pepper plants fertilized with N, K up to 100% of recommended rate (RR) were produced high value for each of plant height, number of branches per plant, stem diameter furthermore total fresh and dry weights of plant than control in both seasons. In addition, different N and K showed fertilization rates significant influence in this connection. Also, the tallest, more branches and the heaviest plant weights of Capsicum annuum was obtained by 100 % RR of nitrogen and potassium fertilization in both seasons. The increases in hot pepper dry weight were about 65.10 and 54.40 % for 100% RR of NK treatment compared to control in the 1st and 2nd seasons, respectively. These results are in accordance with those reported by Ortas (2013) on pepper and tomato, Alkharpotly (2018) on sweet pepper and Souza et al. (2018) on eggplant plants.

Salicylic acid treatments significantly increased hot pepper vegetative growth compared to untreated plants in the two seasons. SA at 100 ppm significantly increased plant height, branch number per plant, stem diameter and total fresh and dry weights compared to control and the other ones under study (Tables 2 and 3). Moreover, the increases in total plant dry weight were about 13.56 and 20.70 % for 100 ppm salicylic acid over control treatment in the 1st and 2nd seasons, respectively. These results hold true in the 2019 and 2020 seasons. In addition, Kowalska and Smoleñ (2013) on tomato, Bakundi and Yahaya (2017) on sweet pepper plants had found similar results.

The combination treatment between nitrogen and potassium fertilization at 100% RR and salicylic acid at 100 ppm significantly increased hot pepper growth parameters compared to control and the other combinations under study in both seasons (Tables 2 and 3). The increases in number of branches per plant were about 82.34 and 80.29 % for the combination between 100% RR of NK fertilization rate and 100 ppm salicylic acid over control treatment in the 1st and 2nd seasons, respectively. Furthermore, increasing SA concentration under each N and K fertilization rate gradually increased plant height (cm), number of branches per plant and stem diameter (cm) as well as total plant fresh and dry weights (g). Moreover, as mentioned above, both NK fertilization and salicylic acid (each alone) increased growth parameters of hot pepper plants, in turn; they together might maximize their influences leading to taller, more branches and heaviest plant weight.

Influence of Nitrogen and Potassium Fertilizers Rate, Salicylic Acid Concentrations and Their Combinations on Yield and its Components

Results of both seasons in Table 4 show that, fruit set percentage, fruit number per plant, fruit length and diameter of hot pepper significantly increased due to NK fertilization rates application compared to control. In the same trend, each of fruit yield per plant, early fruit yield per feddan and total fruit yield per feddan gave the highest value when hot pepper plants were fertilized by 100% RR of nitrogen and potassium fertilizers (Table 5). However, fruit yield components was significantly increased as NK rates increased in both seasons. In other words, the increases in total fruit yield per feddan were about 44.97 and 42.79 % for the 100% RR of NK rate compared to control (unfertilized plants) in the first and second seasons, respectively, with significant difference between this treatment and the other rates under study in 2019 and 2020 seasons. In addition, nitrogen application significantly increased ripe fruit yield (number and weight) of hot pepper up till 75 kg N.ha⁻¹ in both years (Avodele et al., 2015).

Table 2. Influence of nitrogen and potassium fertilizers rate (F), salicylic acid concentrations (S) and their combinations (F×S) on plant height (cm), number of branches per plant and stem diameter (mm) of hot pepper plants during 2019 and 2020 seasons

			Salicylic	acid con	ncentratio	on (ppm)								
NK fertilizers rate (from100% recommended	0.0	50	100	Mean (F)	0.0	50	100	Mean (F)						
rate*)		First	season			Second	season							
		Plant height (cm)												
0.0	56.89g	59.89f	60.56de	59.11D	60.78i	61.22i	61.78hi	61.26D						
50	58.89f	61.45d	63.22c	61.19C	62.44gh	63.56fg	66.78d	64.26C						
75	60.55de	64.11c	67.89b	64.18B	64.00f	66.89d	71.22b	67.37B						
100	63.55c	66.67b	70.89a	67.04A	65.33e	68.89c	72.89a	69.04A						
Mean (S)	59.97C	63.03B	65.64A		63.14C	65.14B	68.17A							
		Number of branches / plant												
0.0	14.44g	15.78f	17.22e	15.81D	15.22g	16.89f	17.44f	16.52D						
50	15.44f	19.11d	22.78c	19.11C	14.89g	18.67e	20.78d	18.11C						
75	19.89d	22.34c	24.78b	22.33B	16.89f	21.89d	26.11b	21.63B						
100	22.78c	24.55b	26.33a	24.55A	18.67e	23.11c	27.44a	23.07A						
Mean (S)	18.14C	20.45B	22.78A		16.42C	20.14B	22.94A							
			S	tem dian	neter (mn	n)								
0.0	51.67i	55.00f	53.00gh	53.22D	52.33h	53.33gh	55.67ef	53.78D						
50	52.33hi	55.33f	56.67e	54.78C	53.00gh	56.33e	57.33e	55.56C						
75	53.67g	59.00d	58.67d	57.11B	54.33fg	60.33d	62.33c	59.00B						
100	60.33c	66.33b	70.33a	65.67A	64.67b	69.33a	70.00a	68.00A						
Mean (S)	54.50C	58.92B	59.67A		56.08C	59.83B	61.33A							

NK fertilizers		Salicylic acid concentration (ppm)										
rate (from100% recommended	0.0	50	100	Mean (F)	0.0	50	100	Mean (F)				
rate*)		First s	season			Second	season					
		Total plant fresh weight (g)										
0.0	381.73j	404.87i	417.93h	401.51D	413.03j	428.77hi	436.17gh	425.99D				
50	404.57i	420.37h	433.90g	419.61C	418.90ij	437.37gh	455.63f	437.30C				
75	445.23f	488.23e	503.07d	478.84B	439.07g	471.77e	529.43c	480.09B				
100	532.30c	573.80b	613.33a	573.14A	507.23d	591.40b	657.73a	585.46A				
Mean (S)	440.96C	471.82B	492.06A		444.56C	482.32B	519.74A					
			То	tal plant	dry weigł	nt (g)						
0.0	80.47k	81.77j	87.67hi	83.30 D	85.77k	90.87i	93.80h	90.14D				
50	86.03i	89.20h	93.30g	89.51 C	88.33j	97.23g	99.87f	95.14C				
75	96.57f	119.47e	122.87d	112.97B	95.07h	108.07e	129.50c	110.88B				
100	130.47c	139.10b	143.03a	137.53A	124.47d	141.10b	151.97a	139.18A				
Mean (S)	98.38C	107.38B	111.72A		98.41C	109.32B	118.78A					

Table 3. Influence of nitrogen and potassium fertilizers rate (F), salicylic acid concentrations (S) and their combinations (F×S) on total plant fresh and dry weights (g) of hot pepper plants during 2019 and 2020 seasons

306

Table 4. Influence of nitrogen and potassium fertilizers rate (F), salicylic acid concentrations (S) and their combinations (F×S) on fruit set percentage, fruit number per plant, fruit length (cm) and fruit diameter (cm) of hot pepper plants during 2019 and 2020 seasons

NK fertilizers	Salicylic acid concentration (ppm)										
rate (from100% recommended	0.0	50	100	Mean (F)	0.0	50	100	Mean (F)			
rate*)		First s	season			Second	season				
			I	Fruit set j	percentag	ge					
0.0	34.67g	36.07ef	36.60e	35.78D	35.17f	36.57e	37.60d	36.44D			
50	35.57f	37.70d	39.20c	37.49C	36.17e	37.40d	38.97c	37.51C			
75	37.50d	38.83c	40.77ab	39.03B	36.67e	39.20c	40.03b	38.63B			
100	38.70c	40.53b	41.30a	40.18A	39.03c	40.37b	42.10a	40.50A			
Mean (S)	36.61C	38.28B	39.47A		36.76C	38.38B	39.68A				
			Nun	nber of fi	uits per j	plant					
0.0	15.44g	17.00ef	17.22e	16.56D	16.22h	17.44fgh	18.00fg	17.22D			
50	16.22fg	17.44e	17.89e	17.18C	16.89gh	18.11efg	19.33de	18.11C			
75	17.44e	20.78d	22.00c	20.07B	18.22ef	23.00c	24.78b	22.00B			
100	21.66cd	23.44b	25.89a	23.66A	20.44d	24.33b	26.22a	23.67A			
Mean (S)	17.69C	19.67B	20.75A		17.95C	20.72B	22.09A				
				Fruit ler	ngth (cm)						
0.0	9.23f	9.47ef	10.00de	9.57D	8.83f	10.00e	10.87cd	9.90D			
50	10.13d	10.50d	11.57c	10.73C	10.30de	11.00c	11.73b	11.01C			
75	10.50d	11.73c	12.50b	11.58B	10.73cd	12.00b	13.07a	11.93B			
100	11.43c	12.80ab	13.27a	12.50A	11.78b	12.20b	13.03a	12.33A			
Mean (S)	10.33C	11.13B	11.83A		10.41C	11.30B	12.18A				
			ŀ	Fruit diai	neter (cn	1)					
0.0	1.147g	1.177f	1.200e	1.174D	1.150d	1.157d	1.193c	1.167D			
50	1.170f	1.210de	1.253c	1.211C	1.163d	1.187c	1.240b	1.197C			
75	1.213d	1.257c	1.287b	1.252B	1.190c	1.227b	1.280a	1.232B			
100	1.220d	1.260c	1.307a	1.262A	1.197c	1.233b	1.297a	1.242A			
Mean (S)	1.188C	1.226B	1.262A		1.175C	1.201B	1.253A				

Table 5. Influence of nitrogen and potassium fertilizers rate (F), salicylic acid concentrations (S) and their combinations (F×S) on fruit yield per plant (g), early fruit yield per feddan (ton) and total fruit yield per feddan (ton) of hot pepper plant during 2019 and 2020 seasons

NK fertilizers	Salicylic acid concentration (ppm)												
rate (from100% recommended	0.0	50	100	Mean (F)	0.0	50	100	Mean (F)					
rate*)		First s	season			Second	season						
		Fruit yield per plant (g)											
0.0	307.56h	342.36g	360.72f	336.88D	281.16j	330.96h	347.04g	319.72D					
50	360.24f	397.32e	421.56d	393.04C	314.64t	354.72f	409.44e	359.60C					
75	405.36e	454.80c	482.40b	447.52B	358.32f	427.20d	438.24c	407.92B					
100	466.20c	483.84b	515.28a	488.44A	443.04c	454.44b	472.20a	456.56A					
Mean (S)	384.84C	419.58B	444.99A		349.29C	391.83B	416.73A						
	Early fruit yield per feddan (ton)												
0.0	0.337g	0.357h	0.373i	0.356D	0.347h	0.367g	0.377g	0.363D					
50	0.377g	0.443f	0.497d	0.439C	0.370g	0.420f	0.457e	0.416C					
75	0.467e	0.517c	0.527bc	0.503B	0.487d	0.507c	0.537b	0.510B					
100	0.487d	0.533b	0.570a	0.530A	0.513c	0.547ab	0.557a	0.539A					
Mean (S)	0.417C	0.463B	0.492A		0.429C	0.460B	0.482A						
			Total f	fruit yield	per fedda	an (ton)							
0.0	3.691h	4.108g	4.329f	4.043D	3.374j	3.972h	4.165g	3.837D					
50	4.323f	4.768e	5.059d	4.717C	3.776i	4.257f	4.913e	4.315C					
75	4.864e	5.458c	5.789b	5.370B	4.300f	5.126d	5.259c	4.895B					
100	5.594c	5.806b	6.183a	5.861A	5.317c	5.453b	5.666a	5.479A					
Mean (S)	4.618C	5.035B	5.340A		4.192C	4.702B	5.001A						

308

As shown in Tables 4 and 5 that, fruit set (%), number of fruits per plant, both fruit length and diameter (cm) as well as fruit yield per plant (g) and per feddan (ton) of Capsicum annuum plants significantly increased with salicylic acid application at any concentration compared to control (plants sprayed with tap water) in both However. increasing seasons. SA concentration gradually increased fruit yield components in 2019 and 2020 seasons. The best treatment in this connection was that 100 ppm of SA with significant differences with the other SA concentrations under study. However, application of either silicon or salicylic acid gave higher mean values for tomato yield and its components (Elkhatib et al., 2017).

Utilizing salicylic acid at 100 ppm under all NK levels which tested significantly increased hot pepper yield components as compared to use NK treatments alone during both seasons. In the same time, the combination treatment between 100% RR of NK and SA at 100 ppm was more effective in respect to fruit set percentage, number of fruits per plant, both fruit length and diameter, fruit yield per plant, early fruit yield per feddan and total fruit yield per feddan values than the other interaction treatments of NK fertilization and SA which studied during the two seasons (Tables 4 and 5). In addition, Ahmed and Abdelkader (2020) on chilli plants showed that, fruit yield per plant (kg) were gradually increased by increasing NPK fertilizer levels. Furthermore, exogenous application of SA to hot pepper plants can influence their yield maximize through participating in the regulation of several plant physiological processes such as cell membranes permeability, ion uptake and photosynthetic content and rate (Gunes et al., 2005; Stevens et al., 2006; Mimouni et al., 2016).

Influence of Nitrogen and Potassium Fertilizers Rate, Salicylic Acid Concentrations and Their Combinations on some Chemical Constituents

It is quite clear from the results in Tables 6 and 7 that, using NK fertilization rates at 100% RR significantly increased total chlorophyll content, total soluble solids, both vitamin C and capsiacine content (second season) of hot pepper plants compared with control and the other ones under study in both seasons, in most cases. Generally, increasing NK fertilization rates gradually increased hot pepper chemical constituents which studied. However, the lowest values of total chlorophyll content (44.68 and 45.40 SPAD) obtained without NK application treatment (control) in the 1st and 2nd seasons, respectively. Likewise, the increase in this connection was also found by Koshale et al. (2018) on chilli plants.

Different salicylic acid concentrations (100 ppm) significantly increased studied chemical constituents' content of hot pepper plants compared to control in both seasons (Tables 6 and 7). Moreover, the increases in capsiacine content were about 1.45% and 2.45% for the SA at 50 and 100 ppm compared to control, respectively during the second season only. In contrast the lowest value in this regard (133.63 mg/ 100g as dry weight) was produced without foliar spray with salicylic acid (control). Ibrahim et al. (2019) pointed out that, salicylic acid showed the greatest fruit quality traits of sweet pepper plants, such as vitamin C content, total soluble solid content and total sugar content than control.

In general, total chlorophyll content, total soluble solids, vitamin C content and capsiacine content of hot pepper were increased by using all salicylic acid concentrations which studied under NK fertilization treatments up to 100% RR level if compared with control during 2019 and 2020 seasons (Tables 6 and 7). However, salicylic acid treatment at 100 ppm Table 6. Influence of nitrogen and potassium fertilizers rate (F), salicylic acid concentrations (S) and their combinations (F×S) on total chlorophyll content (SPAD), total soluble solids (Brix^o) and vitamin C content of hot pepper plants during 2019 and 2020 seasons

NK fertilizers		Salicylic acid concentration (ppm)													
rate (from100% recommended	0.0	50	100	Mean (F)	0.0	50	100	Mean (F)							
rate*)		First s	season			Second	season								
			Total o	chlorophy	yll content	(SPAD)									
0.0	44.60f	44.57f	44.87f	44.68D	45.33b	45.10b	45.77b	45.40D							
50	45.97e	46.50e	48.00bc	46.82C	46.10b	46.50b	48.37b	46.99C							
75	46.17e	47.63cd	48.47b	47.42B	47.60b	48.57b	49.97ab	48.71B							
100	47.17d	50.23a	50.47a	49.29A	58.23a	49.17b	49.97ab	52.46A							
Mean (S)	45.98C	47.23B	47.95A		49.32C	47.33B	48.52A								
		Total soluble solids (Brix ^o)													
0.0	6.040i	6.173g	6.187ef	6.133D	6.103j	6.130i	6.153gh	6.129D							
50	6.107h	6.203e	6.240d	6.183C	6.133hi	6.183f	6.223e	6.180B							
75	6.183fg	6.233d	6.273c	6.230B	6.157g	6.267d	6.310c	6.244C							
100	6.357b	6.430a	6.440a	6.408A	6.320c	6.367b	6.420a	6.369A							
Mean (S)	6.172C	6.260B	6.285A		6.178C	6.237B	6.277A								
		Vitan	nin C con	tent (mg/	/100g fruit	as fresh v	veight)								
0.0	173.60i	183.67de	184.00de	180.42D	177.03cd	173.23d	185.00a-c	178.42D							
50	178.07g	181.67f	182.90e	180.88C	180.73b-d	181.70b-d	185.97a-c	182.80C							
75	175.90h	189.17b	193.10a	186.06B	182.37a-d	185.87а-с	188.27ab	185.50B							
100	184.40d	186.93c	189.27b	186.87A	185.47a-c	188.43ab	191.37a	188.42A							
Mean (S)	177.99C	185.36B	187.32A		181.40C	182.31B	187.65A								

310

NK fertilizers rate	Salicylic acid concentration (ppm)								
(from100%	0.0	50	100	Mean (F)					
recommended rate*)	Capsia	acine content (m	ng/100g as dry w	veight)					
0.0	130.73h	132.40fg	131.30gh	131.47D					
50	135.73de	137.43bc	138.30b	134.16C					
75	132.83fg	133.70ef	135.93cd	136.99B					
100	135.73d	138.77b	142.10a	138.87A					
lean (S)	133.63C	135.57B	136.91A						

Table 7.	Influence	of	nitrogen	and	potassium	fertilizers	rate	(F),	salicylic	acid	
	concentrat	tions	s (S) and	their	combination	s (F×S) on	capsi	acine	content o	f hot	
pepper plants during 2020 season											

*Recommended rate (RR): 90 and 76 kg/feddan of N and K₂O, respectively.

might succeed in increasing fruit chemical quality under high NK fertilization levels (100% RR) compared to control in both seasons, in most cases. Generally, total chlorophyll content, total soluble solids, vitamin C content of hot pepper gradually increased as NK fertilization levels increased under any SA concentration during 2019 and 2020 summer seasons as well as capsiacine content at the second one. The positive effect of NK fertilization may be due to increase nutrients in the soil solution. This increase can encourage the plant growth, which increased the photosynthetic rates leading to an increase in the assimilation rates and hence the total soluble solids and capsiacine content were increased. These results are in harmony with those found by Aljalaly et al. (2018) on the pepper plant.

Conclusion

It can be concluded that, utilizing 100 ppm salicylic acid as foliar application three times/season combined with 100% NK at recommended rate (90 and 76 kg/feddan of N and K_2O , respectively) enhancing plant growth, yield components and fruit quality of hot pepper plants (*Capsicum annuum*,

L.) cv. Champion under Sharkia Governorate conditions.

REFERENCES

- Abou El-Yazied, A. (2011). Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (*Capsicum annuum* L.) under autumn planting. Res. J. Agric. and Biol. Sci., 7(6): 423-433.
- Ahmed, M.A. and Abdelkader, M.A.I. (2020). Enhancing growth, yield components and chemical constituents of chilli (*Capsicum annuum* L.) plants by using different NPK fertilization levels and nano-micronutrients rates. Asian J. Soil Sci. and Plant Nutr., 6(2): 17-29.
- Aktas, H.; Abak, K. and Sensoy, S. (2009). Genetic diversity in some Turkish pepper (*Capsicum annuum* L.) genotypes revealed by AFLP analyses. Afr. J. Biotechnol., 8 (18): 4378–86.
- Aljalaly, S.S.; Al-Mentafji, H.N.H. and Al-Arzawazi, A.L.A. (2018). The effect of salicylic acid, fertilizer NPKZn and water stress on the pepper plant, *Capsicum annuum* L. Int. J. Agric. Stat. Sci., 14 (2): 705-712.

- Alkharpotly, A.A. (2018). Growth and yield responses of sweet pepper (*Capsicum annuum* L.) to organic and NPK mineral fertilization under plastic houses conditions at arid regions. J. Plant Prod., Mansoura Univ., 9 (3): 299-305.
- Aminifard, M.H.; Aroiee, H.; Ameri, A. and Fatemi, H. (2012). Effect of plant density and nitrogen fertilizer on growth, yield and fruit quality of sweet pepper (*Capsicum annuum* L.). Afr. J. Agric. Res., 7 (6): 859-866.
- Analytical Software (2008). Statistix Version 9, Analytical Software, Tallahassee, Florida, USA.
- Anan, T.; Ito, H.; Mtsunga, H. and Monma, S. (1996). A simple method for determining the degree of pungency of peppers. *Capsicum* and Eggplant Nesletter, 15: 51-54.
- AOAC (1990). Official Methods of Analysis 15th Ed. Association of Official Analyt. Chem., Inc., Virginia, USA.
- Arfan, M.; Athar, H.R. and Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. J. Plant. Physiol., 164: 685-694.
- Ayodele, O.J.; Alabi, E.O. and Aluko, M. (2015). Nitrogen fertilizer effects on growth, yield and chemical composition of hot pepper (Rodo). Int. J. Agric. and Crop Sci., 8 (5): 666-673.
- Bakundi, Y.M. and Yahaya, S.U. (2017). Mitigation of moisture stress in sweet pepper (*Capsicum annuum* L.) by foliar application of salicylic acid in Sudan Savanna Agro-Ecology, Nigeria. J. Dry Land Agric., 3(1): 10-18.
- Bose, T.K.; Som, M.G. and Kabir, J. (1993). Vegetable Crops, Naya Prokash Pub Co. Calcutta. Pp, 234.

- Bukhori, M.F.M.; Jaafar, H.Z.E. and Ghasemzadeh, A. (2015). Watering and nitrogen and potassium fertilization: The significance of abiotic control on *Gynura procumbens* (Lour.) Merr herbs in Malaysia for better growth and secondary metabolite enrichment. J. Mol. Biol. Biotechnol., 23 (2): 303-313.
- Chapman, H. and Pratt, P. (1978). Methods of Analysis for Soils, Plants and Waters. Div. Agric., Sci. Univ. Calif. USA, 16-38.
- Eledfawy, Y.M. (2017). Effect of NPK fertilizers and humic acid applications on yield and quality of canola plant (*Brassica napus* L.) grown in sandy soil. Nature and Sci., 15(12): 205-2011.
- Elkhatib, H.A.; Gabr, S.M.; Roshdy, A.H. and Abd Al-Haleem, M.M. (2017). The impacts of silicon and salicylic acid amendments on yield and fruit quality of salinity stressed tomato plants. Alex. Sci. Exch. J., 38 (4): 933-939.
- Gomez, N.K. and Gomez, A.A. (1984). Statical Procedures for Agricultural Research. 2nd Ed., John wiley and sons, New York. USA, 680.
- Gonzalez-Diaz, L.; Martinez-Jimenez, P.; Bastida, F. and Gonzalez-Andujar, J.L. (2009). Expert systems for integrated plant protection in pepper (*Capsicum annuum* L.). Expert Systems with Application, 36:8975–79.
- Gunes, A.; Inal, A.; Alpaslan, M.; Cicek, N.; Guneri, E.; Eraslan, F. and Guzelordu, T. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (*Zea mays* L.). Arch. Agron. Soil Sci., 51:687-95.
- Hafsi, C.; Debez, A. and Abdelly, C. (2015). Potassium deficiency in plants: effects and signaling cascades. Acta Physiol. Plant, 36: 1055-1070.

- Ibrahim, A.; Abdel-Razzak, H.; Wahb-Allah, M.; Alenazi, M.; Alsadon, A. and Dewir, Y.H. (2019). Improvement in growth, yield, and fruit quality of three red sweet pepper cultivars by foliar application of humic and salicylic acids. Hort. Technol., 18 (93): 1-9.
- **Kazemi, M. (2013).** Foliar application of salicylic acid and calcium on yield, yield component and chemical properties of strawberry. Bull. Env. Pharmacol. Life Sci., 2 (11):19-23.
- Koshale, C.; Kurrey, D.K. and Banjare, L.D. (2018). Effect of organic manure and inorganic fertilizer on growth, yield and physiological parameter of chilli (*Capsicum annuum* L.). Int. J. Chem. Stud., 6(4): 118-122.
- Kowalska, I. and Smoleñ, S. (2013). Effect of foliar application of salicylic acid on the response of tomato plants to oxidative stress and salinity. J. Elementol., 18 (2): 39–254.
- Malik, M.N. (1994). Horticulture. In: Baloch AF (ed.) Vegetable crops. National Book Foundation Islamabad, 510-511.
- Markwell, J.; Osterman, J.C. and Mitchell, J.L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Res., 46: 467-472.
- **Marschner, H. (1995).** Mineral of Higher Plants. 2nd Ed., New York, Academic Press.

- Mimouni, H.; Wasti, S.; Manaa, A.;
 Gharbi, E.; Chalh, A.; Vandoorne, B.;
 Lutts, S. and Ahmed, H.B. (2016).
 Does salicylic acid (SA) improve tolerance to salt stress in plants? a study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: A J. Integrative Biol., 20 (3): 180-190.
- **Ortas, I. (2013).** Influences of nitrogen and potassium fertilizer rates on pepper and tomato yield and nutrient uptake under field conditions. Scien. Res. and Essays, 8 (23): 1048-1055.
- Raskin, I.; Skubatz, H.; Tang, W. and Meeuse, B.J.D. (1990). Salicylic acid levels in thermogenic and nonthermogenic plants. Ann. Bot, 66: 376-383.
- Souza, A.C.; Rezende, R.; Lorenzoni, M.; Seron, C.C. and Santos, F.A.S. (2018). Agronomic efficiency and growth of eggplant crop under different potassium and nitrogen doses. Rev. Caatinga, Mossoró, 31(3): 737–747.
- Stevens, J.; Senaratna, T. and Sivasithamparam, K. (2006). Salicylic acid induces salinity tolerance in tomato (*Lycopersicon esculentum* cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Pl. Gro. Reg., 49 (1): 77-83.
- Wiedenhoeft, A.C. (2006). Plant Nutrition. Hopkins WG (eds) The Green World, Chelsea House Publisher, New York NY, 16-43.

الملخص العربى

تأثير معدل الأسمدة النيتر وجينية والبوتاسية بالتداخل مع حمض الساليسيليك على النمو، والمحصول، وجودة الفلفل الحار صنف شامبيون

أحمد عبد الله محمود محسن

قسم البساتين (خضر)، كلية الزراعة، جامعة الزقازيق، مصر.

أجريت تجربة حقلية من أجل در اسة تأثير معدل التسميد بالنيتروجين والبوتاسيوم (صفر، 50، 75 و100% من المعدل الموصى به)، تركيز حمض الساليسيليك (صفر و50 و100 جزء في المليون) ومعاملات التفاعل بينهما على نباتات الفلفل الحار صنف شامبيون. كان المعدل الموصى به من النيتروجين والبوتاسيوم كما هو متبع في منطقة الزراعة هو 90 و75 كم ن وبورأ/ فدان، على التوالي. صممت التجربة كقطع منشقة مرة واحدة في تصميم القطاعات العشوائية الكاملة بثلاثة مررات في مزرعة البحوث الزراعة، بمان النيتروجين والبوتاسيوم كما هو متبع في منطقة الزراعة هو 90 و76 مكررات في مزرعة البحوث الزراعية، بكلية الزراعة، جامعة الزقازيق، مصر خلال موسمي الصيف المتاليين لأعوام مكررات في مزرعة البحوث الزراعية، بكلية الزراعة، جامعة الزقازيق، مصر خلال موسمي الصيف المتتاليين لأعوام مريرات الفلفل الحار مثل ارتفاع النيان الإيجابي لوحظ بين معدل التسميد النيتروجيني والبوتاسي وصفات النمو رانين واليوتاسي وصفات النمو رات الفلفل الحار مثل ارتفاع النبات، وعدد الأفرع لكل نبات، وقطر الساق، والوزن الطازج والجاف للنبات، والتي زادت مع زيادة معدل التسميد بالنيتروجيني والبوتاسيوم مقارنة بالكنترول. أدت معدلات التسميد النيتروجيني والبوتاسي وصفات النمو والبوتاسي النبات الفلفل الحار مثل ارتفاع النبات، وعدد الأفرع لكل نبات، وقطر الساق، والوزن الطازج والجاف للنبات، والتي زادت مع زيادة معدل التسميد النيتروجيني والبوتاسي وويني والبوتاسي والتي والبوتاسي والتي والتي والتي والتي والبوتاسي إلى زيادة تدريجية في مكونات محصول الثمار وجودتها والمحتوى من الكاسياسين. بالإضافة إلى ذلك، أعطى والبوتاسي إلى زيادة تدريجية في مكونات محصول الثمار وجودتها والمحتوى من الكابسياسين. بالإضافة إلى ذلك، أعطى الحرض المعالي وند ماليون أعلى القيم في صفات نمو النمار المحول الكلي وكناك المواد مصن العار مقار لغان والي وفيتامين جزء مي والمحتوى من الماليون والمحصول الكلي وكنات المحصول على أفضل القيم في صفات نمو النمار المبكر والمحصول الكلي وكناك المواد مصن الساليسيليك مقارنة بالكنترول. تم الحصول على أفضل القيم في منعات مم ولنيات والمحونات المحصول على أوكناك ووفيتامين جام ورفيا الكلي وفيتامين جامع ترى وأملوا والموان ألموا مقارنة بالكنترول. تم الحصول على أفضل القيم فيما يعلق محصول الثمار المواد وركز والمحوى ما محصول مان بالموا ورلي

الكلمات الاسترشادية: الفلفل الحار ، النيتر وجين، البوتاسيوم، حمض الساليسيليك، النمو

3- أ.د. على إبراهيم القصــاص

أستاذ البساتين، كلية الزراعة، جامعة المنيا، مصر

المحكمـــون:

¹⁻ أ.د. محمود عبدالهادي حسن

²⁻ أ.د. صفاء مصطفي محمد أستاذ البساتين، كلية الزراعة، جامعة بنها، مصر.

أستاذ الخضر، كلية العلوم الزراعية البيئية، جامعة العريش، مصر