

Available online at www.sinjas.journals.ekb.eg

SCREENED BY SINAI Journal of Applied Sciences

Print ISSN 2314-6079 Online ISSN 2682-3527

AN INVESTIGATION OF THE PALABILITY OF CERTAIN PLANTS FOR THE WHITE GARDEN SNAIL, Theba pisana (MÜLLER)

Dina M.El-S. El-Khateeb1*; M.N.S. El-Basiony2; S.M. AbdEl-Kariem1 and A. S.M. Bashandy³

- 1. Dept. Plant Prod. (Zool.), Fac. Environ. Agric. Sci., Arish Univ., Egypt.
- 2. Dept. Econ. Entomol. (Apiculture), Fac. Environ. Agric. Sci., Arish Univ., Egypt.
- 3. Dept. Agric. Zool. and Nematol., Fac. Agric., Al-Azhar Univ., Cairo, Egypt.

ARTICLE INFO

Article history:

Received: 02/03/2025 Revised: 14/04/2025 Accepted: 28/04/2025

Keywords: Theba pisana, No-Choice, Palatability, Food Consumption.

ABSTRACT

The land snails caused significant problems for a large number of economic plants grown in Egypt. The goal of this study was to measure the palatability and consumption ratio of snails for twelve plants from eight botanical families using a single method of no-choice feeding. Data from the no-choice feeding experiment showed that slices of cucumber, zucchini, and lettuce leaves were the most palatable food for the white garden snail; *T. pisana*. The average consumption weight were 3.90±0.32 g, 2.38±0.27 g, and 2.23±0.15 g for these treated plants, respectively. On the other hand, moderate average consumption was observed for plants such as cabbage, carrot, sowthistle, and watercress with weights of 1.94±0.36 g, 1.80±0.36 g, 1.59±0.08 g, and 1.53±0.03 g, respectively. However, spinach, beetroot, and welsh onion plants had low average consumption weights of 0.80±0.02 g, 0.80±0.01 g, and 0.68±0.06 g, respectively, over six-day. Therefore, it recommended using the most appealing plants to attract terrestrial mollusks in the field as part of their mechanical control approach.

INTRODUCTION

The terrestrial mollusks include many land snails, such as the white garden snail, T. pisana (Müller). They consume a wide variety of economic plants, leading to damaged seedlings, limit growth, and reduced yield. In addition, they feed on plants, also produce lesions that allowing harmful fungi to infect the plants. Snails can spread plant pathogens via their mucus trails, potentially contaminating of plants (Feldkamp, 2002; Lindqvist, et al., 2006; Van Elden, et al., 2015; Bashandy and Awwad, 2022). The white garden snail is becoming an important agricultural problem in numerous areas of the world, particularly during the rainy season. It is a significant economic pest in Egypt, causing harm to a

wide range of economic crops (Odendaal, et al., 2008; Al-Akraa, et al., 2010; Bashandy, 2018; Harmouzi, et al., 2018; Benhamdoun, et al., 2024). The goal of the current research is to analyse consumption and preferences of chosen plant kinds by the white garden snail, T. pisana, under lab circumstances.

MATERIAL AND METHODS

Collected Snails

In mid-September 2022, mature T. pisana snails were collected manually from citrus trees on the Arish Center's college farm in North Sinai Governorate. The snails were placed in clear bags and transferred to the laboratory of the Plant Production Department, Faculty of Environmental

https://doi.org/10.21608/sinjas.2025.363146.1309

^{*} Corresponding author: E-mail address: dinaelkhateeb66@gmail.com

Agricultural Sciences, Arish University, (Godan, 1983; Badawey, 20002; Bashandy, 2018; Bashandy and Awwad, 2022; Al-Harbi *et al.*, 2024).

Tested Plants

Test leaves for nine plants and slices of the edible part for three plants belonging to six families are shown in Table 1.

Acclimatization of Land Snails

The animals were housed in plastic containers (13 cm in diameter by 10 cm in depth) filled with a mixture of clay and sand soil (approximately one to one) and adequate moisture. The containers were closed, and the covers had several holes to allow for ventilation and prevent the snails from escaping. For two weeks, snails were fed lettuce leaves in a laboratory setting with a temperature of 27±2 °C and a relative humidity of 65± 5%. There were five replicates, each containing twenty-five mature snails of the same size and weight. So, each cup has five snails. The animals were deprived of food for 48 hours prior to the start of the experiment (Shetaia, 2005; Bashandy and Awwad, 2024).

The Potential Daily Consumption of Land Snails

The experiment was designed to assess consumption for terrestrial snails without choice. Three hundred snails were selected for the experiment with approximately the same size and weight. Each treatment had five replicates with five snails for each one. Each container was provided with 5g of fresh leaf plants or slices according to the kind of plants listed in Table 1. For six consecutive days, the containers were covered with lids containing fifteen ventilation holes. Each cup was provided with moisture as needed. The amount of food consumed by the animals was measured daily and refilled as necessary throughout the trial period (Eshra, 1997; Al-Akraa et al., 2010; Al-Harbi et al., 2024).

Data Analysis

Means and standard errors have been determined for all variables. Prior to analysis, the data were verified for normality. Data were analyzed using one-way ANOVA and LSD test (0.05) with CoStat_{6.311} program.

RESULTS

According to statistical analysis, there were notable variations in the pace at which plants were consumed by snails throughout the experiment (Table 2). The results showed that, the highest midpoint mean consumption weight of plants during the first day was zucchini, carrots, sowthistle, and cauliflower. While the highest mean consumption weight on the second day was spinach, with beetroot being the lowest mean consumption food among the other plants for land snails. Furthermore, plants such as cucumber, lettuce, and cabbage had the highest mean consumption for land snails during the third day of the trial. All these plants showed significant differences consumption by the animals over the six days. On the other hand, there were nonsignificant differences in the rate of mean consumption for watercress, and chard during the trial days. Additionally, a statistical examination of the data in Table 2 revealed that the mean intake of snails varied significantly throughout the six consecutive days of the trial. It displayed the following: the most consumed meal for the white garden snail, T. pisana, was cucumber slices, with a median consuming weight of 3.90±0.32 g, followed by slices of zucchini, and lettuce leaves, which were 2.38 ± 0.27 g, and 2.23 ± 0.15 g, respectively. The moderate average consumption for land snails was 1.94±0.36g, 1.80±0.36g, 1.59± 0.08g, and $1.53\pm0.03g$ for plants such as cabbage, carrots, sowthistle, and watercress, respectively. Spinach, beetroot, and welsh onion had the lowest average consumption that was $0.80\pm0.02g$, $0.80\pm0.01g$, and $0.68\pm$ 0.06g, respectively.

Table 1. Twelve plants from six botanical families were used to evaluate the consumption experiment for the terrestrial snail, *T. pisana*, in the laboratory

Family	Scientific name	Common name	Part of used		
	Brassica oleracea var. capitata	Cabbage	الكرنب		
Brassicaceae	Nasturtium officinale	Watercress	الجرجير		
	Brassica oleracea var. botrytis	Cauliflower	القرنبيط		
Amaranthaceae	Beta vulgaris var. rubra	Beetroot	البنجر		
	Spinacia oleracea	Spinach	السبانخ	Leaf	
	Beta vulgaris var. vulgaris	Chard	السلق		
Amaryllidaceae	Allium fistulosum	Welsh onion	البصل الويلزي		
Asteraceae	Lactuca sativa	Lettuce	الخس		
	Sonchus oleraceus	Sowthistle	الجعضيض		
Cucurbitaceae	Cucumis sativus	Cucumber	الخيار		
	Cucurbita pepo	Zucchini	الكوسة	slices of the edible part	
Umbelliferae	Daucus carota	الجزر Carrot		carere part	

Table 2. The mean consumption of twelve plants by the white garden snail, *T. pisana*, in vitro Consumption average for 25 land snails (g/day)

Days Plants	1 st	2 nd	3 rd	4 th	5 th	6 th	Mean ± SE	LSD _{0.05}
Cabbage	1.49 ^b	1.34 ^b	3.73 ^a	1.63 ^b	1.76 ^b	1.66 ^b	1.94±0.36°	0.47
Cucumber	3.88^{bc}	2.70^{d}	4.88^{a}	4.56 ^{ab}	3.05 ^{cd}	4.33^{d}	$3.90{\pm}0.32^{a}$	0.47
Watercress	1.56 ^a	1.62 ^a	1.41 ^a	1.46 ^a	1.61 ^a	1.51 ^a	$1.53{\pm}0.03^{de}$	0.49
Beetroot	0.79^{ab}	0.83^{a}	0.84^{a}	0.76^{b}	0.80^{ab}	0.78^{b}	0.80 ± 0.01^{g}	0.06
Welsh onion	0.55^{c}	0.47^{c}	0.62bc	0.88^{a}	0.79^{ab}	0.81^{ab}	0.68 ± 0.06^{g}	0.19
Spinach	0.72^{b}	0.86^{a}	0.80^{ab}	0.72^{b}	0.88^{a}	0.82^{ab}	0.80 ± 0.02^{g}	0.11
Chard	1.05 ^a	1.11 ^a	1.07^{a}	1.10 ^a	1.04 ^a	1.14 ^a	$1.09\pm0.01^{\rm f}$	0.23
Lettuce	2.36^{ab}	2.61 ^a	2.59 ^a	1.62 ^c	2.10 ^{bc}	2.08^{bc}	$2.23{\pm}0.15^{b}$	0.48
Zucchini	3.62 ^a	2.64 ^b	1.74 ^c	2.12 ^{bc}	2.13 ^{bc}	2.01 ^{bc}	2.38 ± 0.27^{b}	0.69
Carrot	3.63 ^a	1.55 ^b	1.34^{b}	1.52 ^b	1.50^{b}	1.31 ^b	1.80 ± 0.36^{cd}	0.29
Cauliflower	1.51 ^a	1.15 ^b	1.10^{b}	1.20 ^{ab}	1.21 ^{ab}	1.43 ^{ab}	1.27 ± 0.06^{ef}	0.35
Sowthistle	1.78 ^a	1.51 ^b	1.23°	1.64 ^{ab}	1.72 ^{ab}	1.67 ^{ab}	1.59 ± 0.08^d	0.23
LSD _{0.05}							0.28	

The mean values with the same letter did not differ significantly (p<0.05) according to Duncan's multiple rang test (**Duncan**, 1955). Twenty-five land snails (five animals per container) for every plant.

DISCUSSION

Being polyphagous, snails consume a variety of plant component, such as fruits and leaves, as well as decomposing organic waste. According to research on feed preference, snails allowed free choice feeding are able to select their own food. Also, different terrestrial snails have different eating habits and food preferences. Study findings revealed that white garden snails, *T. pisana* had significant (P≤0.05) preferences for various foods. Slices of cucumber, zucchini and lettuce leaves were the most preferred foods

Similarly, **Bishara** et al. (1968) reported that the white garden snail mostly consumed Egyptian clover, with a small amount from grains and beans. **El-Okda** (1984) found that wide leaf weeds and Egyptian clover were attacked by *Monacha* sp. and *Oxychillus* sp. **Chang** (1991) declared that, in both lab and field new leaf lettuce was more attractive to terrestrial mollusk, *Cepeae nemoralis*.

In addition, the normal consumption for the land snail Helix aspersa was 0.005 to 0.026 g per day (Asran, 1994). While land snails, Eobania vermiculata, H.vestalis, T. pisana preferred banana plants, orange trees and the weed, Medicago polymorpha, respectively (Nakhla and Tadros, 1995). E. vermiculat and Monacha sp. were more likely to consume the lettuce leaves, peas and cabbage, respectively while the London rocket weed was less preferred by them (Abd El-Hak, 1997). Similarly, Arafa (1997) found that the most palatable plants for E. vermiculata were lettuce, sweet peas and cabbage during seven days. Eshra (1997), Shoeib (1997) and Mahrous et al. (2002) found that E. vermiculata and M. cartusiana preferred lettuce and cabbage. Giant African snails consumed cabbage and cucumber **leaves** (Okafor, 2001; Akintomide, 2004). Cabbage and lettuce were the most acceptable plants for M. cartusiana and H. vestalis (Mohamed, 2004; 2016). Asran, et al. (2016) proved that E. vermiculata ate more of lettuce, squash, carrots and potatoes. Moreover, Bashandy (2018) found that cabbage was the most consumed plants and Snow thistle was the least palatable for Deroceras leave. Bashandy and Awwad (2022) found that cabbage and lettuce leaves were the most palatable of all plants for land snails in the no-choice trial.

Conclusion

Land snails preferred cucumber slices, zucchini, and lettuce leaves over other plants. They showed the moderate average consumption for plants such as cabbage, carrots, sowthistle, and watercress, respectively. The lowest average consumption for snails observed for spinach, beetroot, and welsh onion during a period of six days. As a result, it may recommend using the most appealing plants to attract terrestrial mollusks in the field as part of their mechanical management strategies.

REFERENCES

Abd El-Hak, A.I.A. (1997). Studies on some land molluscs at Sharkia Governorate. M.Sc. Thesis, Fac. Agric., Al-Azhar Univ., 137.

Ademolu, K.O.; Jayeola, O.A.; Idowu, A.B. and Elemide, I.O. (2011). Circadian variation in locomotor and feeding periods of two land snail species. Arch Zootec, 60:1323–1326.

Akintomide, I.A. (2004). Tropical snail farming Oak Ventures publishers Lagos, 5–6.

Al-Akraa, T.M.M.; El-Danasory, M.A. and Mohafez, M.A. (2010). Food preference and food consumption of some land snails under laboratory conditions. J. Plant Prot. and Pathol., 1 (4): 189-193.

Albuquerque, F.S.; Peso-Aguiar, M.C. and Assuncao-Albuquerque, M.J.T.

- (2008). Distribution, feeding behaviour and control strategies of the exotic land snail *Achatina fulica* (Gastropoda: Pulmonata) in the northeast of Brazil. Braz. J. Biol., 68: 837–842.
- Al-Harbi, R.K.; Ismail, A.M.; Bashandy, A.S.M.E.; Awwad, M.H.; Raddy, H.M. and Korrat, E.E.E. (2024). In vitro assessment of the food preference and toxicity of five insecticides against the land snail *Eobania vermiculata* (Gastropoda; Helicidae). Agron. Res., 22 (S2): 589–607.
- **Arafa, A.A.** (1997). Studies on some land mollusca at Sharkia Governorate. M.Sc. Thesis, Fac. Agric., Al-Azhar Univ., 137.
- Asran, A.A.; Keshta, T.M.S.; Mohamed, G.R.; Ali Mona, A. and Abou-Hashem A.A. (2016). Preference of brown garden snails *Eobania vermiculata* to some vegetables under laboratory conditions. Egypt. J. Appl. Sci., 31(1): 1-8.
- Asran, F.D. (1994). Studies on harmful terrestrial snails and their management on Egyptian agricultural lands. M.Sc. Thesis, Insitit. Environ. Study and Res., Ain Shams Univ., 125.
- Badawey, M.A. (2002). Studies on glassy clover snail and possibility of its calcium and protein components to be used for nutrition, M.Sc. Thesis, Agric. Zool. and Nematol. Dept., Fac. Agric., Al-Azhar Univ., 157.
- Bashandy, A. S. (2018). Studies on some terrestrial gastropods injurious to some important cropsat Giza Governorate. Ph.D. Thesis, Agric. Zool. and Nematol. Dept., Fac. Agric., Al-Azhar Univ., 266.
- Bashandy A.S. and Awwad, M.H. (2024). *In vitro* assessment of plant extracts for controlling land snail (*Monacha obstraucta*). Archives of Agric. Sci. J., 7 (1): 73–84. https://aasj.journals.ekb.eg
- Bashandy, A.S. and Awwad, M.H. (2022). An examination of palatableness of

- some leaf plants utilizing two terrestrial snails in Egypt. Egypt. J. Plant Prot. Res. Inst., 5(2): 207–214.
- **Benhamdoun, A.; Achtak, H. and Dahbi, A. (2024).** Bioaccumulation of trace metals in edible terrestrial snails, *Theba pisana* and *Otala spp.*, in a dumpsite area in Morocco and assessment of human health risks for consumers. Environ. Sci. and Pollution Res., 1-17.
- **Bishara, S.I.; Hassan, M.S. and Kalling, A.S. (1968).** Studies on some land snails injurious to agriculture in U.A.R. Rev. Zool., Bot. Afr., LXXVII (3-4): 239 252.
- **Chang, H.W. (1991).** Food preference of the land snail *Cepeae nemoralis* in a north American population. Dept. Biol. Ind. Univ., 24 (1-2): 107-114.
- Chevalier, F.D.; Diaz, R., McDew-White, M.; Anderson, T.J. and Le Clec'h, W. (2020). The hemolymph of *Biomphalaria* snail vectors of schistosomiasis supports a diverse microbiome. Environ. Microbiol., 22 (12): 5450–5466.
- Chevalier, L.; Le Coz-Bouhnik, M. and Charrier, M. (2003). Influence of inorganic compounds on food selection by the brown garden snail *Cornu aspersum* (Muller) (Gastropoda: Pulmonata). Malacologia-philadelphia, 45 (1): 125–132.
- **Duncan, D.B. (1955).** Multiple range and multiple F tests. Biomet., 11(1): 1-42.
- Ebenso, I.E. and Adeyemo, G.O. (2011). Foraging behaviour responses in the African giant land snail *Achatina achatina*. Ethiopian J. Environ. Studies and Manag., 4 (4): http://dx.doi.org/10. 4314/ejesm.v4i4.6.
- El-Okda, M.M. (1984). Land mollusca infestation and chemical control in El-Ismailaia Governorate. Agric. Res. Rev., 62 (1): 87-92.

- Eshra, E.H.H. (1997). Ecological and biological studies on land snails associated with some important economic crops. M.Sc. Thesis, Agric. Zool. and Nematol. Dept., Fac. Agric., Al-Azhar Univ., Egypt, 153.
- **Feldkamp, S. (2002).** Moderm biology. Holt, Rinhart and Winston, USA. 725.
- Godan, D. (1983). Pests and Slugs: Biology and Control. Springer-Verlag, Berlin, Heidelberg, New York, 445.
- Harmouzi, A.; Boughdad, A.; El Ammari, Y. and Chaouch, A. (2018). Toxicity of *Euphorbia helioscopia* pellets to two phytophagous molluscs, *Theba pisana* (Müller, 1774) (Pulmonata: Helicidae) and *Arion hortensis* (Férussac, 1819) (Pulmonata: Arionidae). Pesticidi i fitomedicina, 33 (3-4): 241-252.
- **Iglesias, J. and Castillejo, J.J.M.S.** (1999). Field observations on feeding of the land snail *Helix aspersa* Müller. J. Molluscan Studies, 65 (4): 411–423.
- Lindqvist, I.; Lindqvist, B.; Setala, H. and Tiilikala, K. (2006). Brich oil repels slugs and snails, AFPP. 3rd international conference on non-chemical crop protection method, Lille France 213–15.
- Mahrous, E.; Ibrahim, M.H. and Abd El-Aal, E.M. (2002). Occurrence, population density and importance value of land snails infesting different crops at Sharkia Governorate. Zagazig J. Agric. Res., 29(2): 613-629.
- Mohamed, G.R. (2016). Susceptibility and consumption rates of *Monacha cartusiana* and *Helicella vestalis* land snails to certain plants. Middle East J. Appl. Sci., 6(4): 896–899.

- Mohamed, G.R. (2004). Ecological and biological studies on some species of snails. M.Sc. Thesis Fac. Agric. Moshthor, Zagazig Univ. (Banha branch), 215.
- Nakhla, J.M. and Tadros, A.W. (1995). Studies on the seasonal abundance of land snails on date palm shoots in Sharkia Governorate. Egypt. J. Res., 73 (2): 347-355.
- Odendaal, L.J.; Haupt, T.M. and Griffiths, C.L. (2008). The alien invasive land snail *Theba pisana* in the West Coast National Park: Is there cause for concern?. Koedoe: Afr. Prot. Area Conservation and Sci., 50(1): 93-98.
- Ogbu, C.C.; Ani, A.O. and Emeh, M. (2014). Feed preferences and feeding behaviour of two species of African giant land snails. Archivos de zootecnia, 63 (242): 337–347.
- **Okafor, F.U. (2001).** Edible land snails: a manual of biological management and farming of snails. *Splendid publishers*, Lagos. Splendid Publishers, 1–54.
- Shetaia, Z. S. (2005). Integrated control of land snail pests in the fields of Sharkia Governorate. Ph.D. Thesis, Agric. Zool. and Nematol. Dept., Fac. Agric., Al-Azhar Univ., 147.
- **Shoeib, M.A. (1997).** Ecological studies on some common snail species and their control in Ismailia Governorate. M.Sc. Thesis, Fac. Agric. Suez Canal Univ., Egypt, 115-120.
- Van Elden, S.; Miranda, N.A.; Perissinotto, R. and Adams, J.B. (2015). Plant selection and grazing activity of the invasive snail *Theba pisana* in coastal Algoa Bay, South Africa. Afr. Zool., 50 (3): 227-231.

الملخص العربي

دراسة استساغة وقبول قوقع الحدائق الابيض Theba pisana لبعض النباتات معمليا

دينا منصور السيد الخطيب '؛ محمد نجيب شحاتة البسيوني '؛ صلاح محمد عبدالكريم '؛ أيمن سعيد محمد بشندي "

- ١. قسم الإنتاج النباتي (حيوان زراعي)، كلية العلوم الزراعية البيئية، جامعة العريش، مصر.
 - ٢. قسم الإنتاج النباتي (تربية النحل)، كلية العلوم الزراعية البيئية، جامعة العريش، مصر.
- ٣. قسم الحيوان الزراعي والنيماتودا، كلية الزراعة، جامعة الأزهر بالقاهرة، مصر.

الكلمات الاسترشادية: قوقع الحدائق الأبيض، بدون اختيار، الاستساغة، استهلاك الطعام.