EVALUATION OF GENETIC DIVERSITY OF SOME GENOTYPES IN ALMOND (Prunus dulcis L.) USING SRAP

Naema A. El-Tanger¹, N.A. Rashed¹ and M.M. Sourour²

ABSTRACT

Almond (Prunus dulcis) is one of the most important nut fruits worldwide and its seed has been recognized as a health nutrient supply for human consumption. In this study, as well as their genetic diversity and natural variations using SRAP marker, aiming at exploiting valuable traits for breeding new cultivars. Our study of identified Molecular evaluation of genetic diversity at the DNA level for relationships and population structure among 12 almond genotypes, Identifying alleles (s-alleles) of the genre of self-incompatibility and self-compatibility gene, and preservation of these important resources, the wild distribution of almond and closely related species. A total of 48 bands ranging from 100 to 2000 bp were detected using the 3SRAP primer combinations in the twelve populations (Table 4). The numbers of bands per primer combination ranged from 6 to 21, with an average of 11.57.161 (99.35%) were polymorphic, and the percentage of polymorphic bands produced by each primer ranged from 100%.

Key words: Almond, genetic diversity SRAP, Prunus dulcis.

INTRODUCTION

The genus almond (Prunus dulcis Miller (D.A Webb) syn P. amygdalus Batsch) is one of the oldest tree nut crops and one of the most important nut fruits worldwide (Kester and Gradziel, 1996; Hala’sz et al., 2008; Sorkheh et al., 2009). Almonds are the largest source of commercial tree nut products, with an annual world production of nearly 1.9 million tons and 75 thousand tons from Turkey (FAO, 2012).

Almond was reported to originate in West and Central Asia, but almond species grow in any region with a subtropical Mediterranean climate of mild wet winters and warm, dry summers (Kester and Gradziel, 1996). Since ancient times, almond cultivation rapidly spread throughout the Mediterranean regions from central Asia (Sorkheh et al., 2007).

Almond, scientifically known as Prunus dulcis, under the family Rosaceae, almond tree is the number one tree nut produced on a global basis, it is especially spread through and well adapted to the whole Mediterranean region, from which about 28% of the world production is obtained. Prunus dulcis (Mill.) D.A. Webb. is grown as an economically valuable crop in a number of countries worldwide, but large-scale cultivation has been primarily restricted to semi-arid and arid regions with mild, temperate climates. Considering the species’ wide native range and inherent genetic, morphologic, and phenologic diversity, almond remains quite underused in areas outside those currently in cultivation. Globally, almond is one of the most important nut crops, yet the full horticultural potential of this species has yet to be realized. In recent years, various
molecular markers have been used to evaluate the genetic diversity and relationships among almonds, such as RAPD, AFLP, SSR, ISSR, and SNP (Bartolozzi et al., 1998; Martins et al., 2003; Xu et al., 2004; Xie et al., 2006; Shiran et al., 2007; Sorkheh et al., 2007; Gouta et al., 2010). Sequence-related amplified polymorphism (SRAP) is a frequently used molecular marker, since it is simple, reliable and effective (Guo et al., 2012). Many studies evaluated the level of genetic variability in almond using various types of markers (Xu et al., 2004; Xie et al., 2006; Sorkheh et al., 2007; Pérez-Campos et al., 2011; Rahemi et al., 2012; Distefano et al., 2013).

These studies identified high level of variation and heterozygosity resulting from its self-incompatibility. Numerous studies have been conducted to assess the genetic diversity held in different almond collections around the world. These analyses have used a variety of molecular techniques including the analysis of allozymes and amplified fragment length polymorphism, random amplified polymorphic DNA, simple sequence repeat markers (Sorkhehet al., 2007, 2009).

MATERIALS AND METHODS

Plant Materials

We have been using a total of 12 varieties in this study (Table 1) samples were obtained sheet young people of the three source genetic, gene Bank almonds Sheikh Zuid research station belonging to the Desert Research Centre and the Directorate for Agriculture and South Sinai.

DNA Extraction

The DNA from the young leaves was extracted using a modified CTAB method (Huang et al., 2000). DNA quality was detected by electrophoresis on 0.8% (w/v) agarose gel. DNA concentration was measured by a UV–VIS spectrophotometer, and adjusted to 40 ng ml⁻¹ and then stored at 20 C for SRAP-PCR analysis.

SRAP-PCR Amplification

SRAP primer sequences were synthesized by Beijing Aoke Biological Technology and Service Co. Ltd (Beijing). 357 primer combinations were screened among five plants from different population. From these, 14 primer combinations were selected for the present study based on reproducibility, clarity of bands, and their polymorphism (Table 2).

PCR amplification reactions were carried out according to previously established protocols by Jing et al. (2013) in 20 mL volume, which contained 40 ng of template DNA, 10 PCR buffer (100 Mm Tris–HCl, pH 8.3; 500 mM KCl), 0.18 mM of each dNTP, 0.75 mM of each primer, 1.87 mM of MgCl₂, and 1 unit of Taq DNA polymerase (TaKaRa Biotechnology Dalian Co., Ltd., China). PCR reactions were performed using the following program: an initial step of 5 min at 94 C, followed by 5 cycles of 1 min at 94 C, 1 min at 36 C, and 1 min at 72 C. In the following 30 cycles, the annealing temperature was increased to 51 C, and a final 7 min extension at 72 C. PCR products were separated on 6% denatured polyacrylamide gels and detected by silver staining. Then clear and reproducible distinguished bands were recorded and used in the following analysis. DL2000 DNA ladder (TaKaRa Biotechnology Dalian Co., Ltd., China) was used as DNA markers.

Data Analysis

In SRAP analysis, each clear, reproducible, amplified DNA polymorphic bands between 200 bp and 2000 bp were scored as 1 for presence or 0 for absence to form a binary matrix for further analysis. POPGENE version 1.32 (Yeh et al., 2000) was used to compute the number of effective loci, the percentage of polymorphic loci, observed
Table (1): Almond cultivars and wild species assayed including the origin, parentage and main agronomic characteristics

<table>
<thead>
<tr>
<th>No.</th>
<th>Varieties</th>
<th>Collection sites</th>
<th>Pedigree</th>
<th>Shell</th>
<th>Flowering</th>
<th>GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Latitude Longitude</td>
</tr>
<tr>
<td>S1</td>
<td>Prunus Saint Catherine Monastery</td>
<td>South Sinai</td>
<td>Farkk</td>
<td></td>
<td></td>
<td>28.557149 33.974250</td>
</tr>
<tr>
<td>S2</td>
<td>Prunus Saint Catherine Monastery</td>
<td>South Sinai</td>
<td>Sami</td>
<td></td>
<td></td>
<td>28.556816 33.974785</td>
</tr>
<tr>
<td>S3</td>
<td>Prunus Saint Catherine wadishrez</td>
<td>South Sinai</td>
<td>Farkk</td>
<td></td>
<td></td>
<td>28.560364 33.957002</td>
</tr>
<tr>
<td>S4</td>
<td>Prunus Wadi40</td>
<td>WadiElarabeen South Sinai</td>
<td>Hard</td>
<td></td>
<td></td>
<td>28.551731 33.949981</td>
</tr>
<tr>
<td>S5</td>
<td>PrunusZwyed1</td>
<td>El Sheikh Zuweid North Sinai</td>
<td>Hard</td>
<td></td>
<td></td>
<td>30.952595 34.307769</td>
</tr>
<tr>
<td>S6</td>
<td>PrunusZwyed2</td>
<td>El Sheikh Zuweid North Sinai</td>
<td>Soft</td>
<td></td>
<td></td>
<td>31.222419 34.117095</td>
</tr>
<tr>
<td>S7</td>
<td>Prunus Nonpareil</td>
<td>برسي مطلوج</td>
<td>Unknown</td>
<td>paper</td>
<td></td>
<td>31.349200 27.150591</td>
</tr>
<tr>
<td>S8</td>
<td>Prunusferdal</td>
<td>برسي مطلوج</td>
<td>Unknown</td>
<td>Semi-</td>
<td>Late</td>
<td>31.350141 27.138680</td>
</tr>
<tr>
<td>S9</td>
<td>Prunus Texas</td>
<td>USA</td>
<td>Unknown</td>
<td>Semi-</td>
<td>Late</td>
<td>31.236689 34.117520</td>
</tr>
</tbody>
</table>

S10 Prunusperles (mal)

S11 Prunus IXL USA Unknown Soft Middle

S12 Turkey El Sheikh Zuweid Research Station, North Sinai
Fig. (1): Sweet almond in saint catherine

Fig. (2): Sweet almond in wadies of saint catherine south sinai

Fig. (3): Sweet almond in wadies of saint catherine south sinai

Fig. (4): Almond in wadies of saint catherine south sinai

Fig. (5): Almond leaves and immature fruit
Fig. (7): Sweet almond in saint catherine monastery

Fig. (8): Mature sweet almond in saint catherine

Fig. (9): Almond fruit showing the immature fruit

Fig. (10): Hard almond

Fig. (11): Hard almond

Fig. (12): Hard almond
number of alleles (na), effective number of alleles (ne), Nei’s genetic diversity (h) (Nei, 1973), Shannon’s information index (I), Nei’s coefficient of genetic differentiation (Gst), Nei’s genetic distance (GD) and gene flow (Nm). An analysis of molecular variance (AMOVA) was carried out using AMOVA program version 1.5 (Excoffier et al., 1992). The UPGMA dendrogram were constructed using MEGA 4.0 (Tamura et al., 2007). All data were produced using the program DCFA 1.1 (Zhang and Ge, 2002).

RESULTS

SRAP Polymorphism Analysis

A total of 30 SRAP primer combinations were used to screen polymorphism among 12 genotypes from different almond. Among them 3 SRAP primer combinations amplifying clear and abundant fragments were used to evaluate the genetic diversity of twelve populations. A total of 48 bands ranging from 100 to 2000 bp were detected using the 3SRAP primer combinations in the twelve populations (Table 2). The number of bands per primer combination ranged from 6 to 21, with an average of 11.57. 161 (99.35%) were polymorphic, and the percentage of polymorphic bands produced by each primer ranged from 100%.

SRAP amplification

In the present study, 3 appropriate primer combinations (PCs) were screened out of a total 30 PCs. Among them 3 PCs yielded stable, reproducible amplification patterns in two repetitive experiments. From the 11 PCs and 36 accessions used in this study, a total of 48 fragments ranging from 38 to 1348 bp were scored, of which 48 (100%) were polymorphic, with an average of 100 polymorphic bands per PC (Table 2). This results in agreement with the observations of Budak et al. (2004a) in buffalograss (Buchloedactyloides) Englem, Ferriol et al. (2004) in Cucurbitamoschata and Li and Quiros (2001) in Brassica oleracea L., which has reported the presence of 10–20 polymorphic bands per PC. The percentage of polymorphic bands produced by each PC 100 All primers used in the present study. Effective number of alleles (Ne), expected heterozygosity

Primer Em 8 nd DN8

The results of Primer Em8&DN8 are illustrated in Fig. 1 and Table 1. It give 12 polymorphic bands with different fragment sizes ranging from 1172 to 218 bp for almond.

Primer Em12&DN6

The results of Primer Em12&DN6 are illustrated in Fig. 2 and Table 2. It gives 17 polymorphic bands with different fragment sizes ranging from 767 to 42 bp for almond.

Primer Em2R&DN9

The results of Primer Em2R&DN9 are illustrated in fig.3 and table3. it give19 polymorphic bands with different fragment sizes ranging from 767 to 42 bp for almond.

Genetic similarity and cluster analysis

Pair-wise differences among almond genotypes calculated by statistical package for social science (SPSS ver.13) computer program. The analysis was based on the number of markers that can differentiate between any given pair of genotypes or species to calculate the similarity matrix.

SPSS computer program was applied. The degree of similarity was represented by similar values, which ranged between 0-1 for the most dissimilarity and most similar between any given pair of species. To perform and draw the phylogenetic Dendrogram SPSS program was applied. All the Almond species and accessions were distinguished with identification of 36
Photo (1): DNA polymorphism of the twelve species in almond genotype using SRAP-PCR with Primer Em8&DN8

Photo (2): DNA polymorphism of the twelve species in almond genotype using SRAP-PCR with Primer Em12&DN6

Photo (3): DNA polymorphism of the twelve species in almond genotype using SRAP-PCR with Primer Em2R&DN9
Table (2): The 11 SRAP primer pairs used in this study and their total, polymorphic fragments

<table>
<thead>
<tr>
<th>Primer</th>
<th>No. Bands</th>
<th>Monomorphic</th>
<th>Polymorphic</th>
<th>% Polymorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAP-Em2-DN9</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>SRAP-Em8-DN8</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>SRAP-Em12-DN6</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>0</td>
<td>48</td>
<td>100</td>
</tr>
</tbody>
</table>

A total of 48 bands were scored from all primer pairs for all the 12 genotypes. 48 bands were polymorphic.
different fingerprints, revealing the high power of discrimination of the used SRAP PCs and attesting the great diversity of Almond accessions. The results showed that the highest genetic distance (85) was recorded between “OTU1”, an accession of Prunus Saint Catherine Monastery 1 from Saint Catherine Monastery South Sinai, and “OTU4”, an accession of Prunus Wadi40, and the lowest one (52) was counted between “OTU7” and “OTU1, 2, 3, 4,10”.

The data obtained from SRAP analysis of 12 Almond accessions was subjected to cluster analysis. The dendrogram of genetic relationships among accessions constructed by Neighbor-Joining method with genetic distance are presented in Fig.1. The cluster analysis revealed species-based grouping, with all the Almond genotypes separated from each other. The almond accessions were analyzed, though separated in several different sub-clusters and displayed a high level of genetic variability probably due to the geographical distribution of the materials. Different prunus dulicus accessions grouped together in a same cluster. It can be assumed that the domesticated genotypes of Almond evolved from “Sarakhs” and then this wild accession likely developed to other local Almond. Therefore, it seems that the wild Almond accession plays an important role in evolutionary of the prunus genus, consistent with the results of Arab-Nejhad et al. (2009) and Salimi et al. (2009). Our SRAP-based cluster results also indicated that P. dulcus clustering was related to the geographical locations and climatic conditions of its growing regions, and that the relationship of varaites. Almond accessions in the same place were close (Fig. 1). This result suggests the possible influence of climatic conditions and geographic distances on diversity of different pistachio accessions confirming the results of Barazani et al. (2003) and Hormaza et al. (1994,1998) who have shown significant differences among accessions coming from different area using a variety of morphological and molecular markers, such as RAPDs. The principal coordinate analysis (PCoA) based on genetic similarity matrices were used to visualize the genetic relationships among accessions. The first three eigenvectors together accounted for 37.6% of the total variation at the molecular level, indicating the suitability of the SRAP approaches for genetic clustering. Since the original data are not highly correlated in PCoA, the first few principal coordinates do not explain much of the original variation. Therefore, assessment of genetic relationships on the basis of the first three principal coordinates could lead to misleading interpretations and analysis of genetic relationships among accessions should be based on cluster analysis and also optimal number of principal coordinates that explain maximum amount of original data.

REFERENCES

Excoffier, L.; Smouse, P.E. and Quattro,

المخصص العربي

تقييم التنوع الوراثي لبعض الترتكبات الوراثية في اللوز

نعيمة عبد الحليم الطنجرية، ناهد أحمد راشد، ومحمد محمود سرور

1. مركز بحوث الصحراء، مصر.

2. قسم الإنتاج النباتي، كلية العلوم الزراعية الببتية، جامعة الريش، مصر.

أجريت هذه الدراسة بعمل الهندسة الوراثية بكتلة زراعة عين شمس، بمراكز بحوث الصحراء وثبفت البحث إلى دراسة التنوع الوراثي لعدد من الترتكبات الوراثية لبعض أنواع اللوز والتي تم تجميعها من شمال وجنوب سيناء ومطرود تأخذ بعض أنواع من اللوز في شمال وجنوب سيناء، وتضمن هذه الدراسة على مواصلات مورفولوجية (حجم النمر ومقاومته للريما) وتحلها الظروف البيئية الصعبة (مخططة أساسية للمعجمات الوراثية لأعشاب هذه النباتات).

وذلك بدراسة الخصائص الوراثية لكل ترتكب وراثياً على المستوى الوراثي. للوصول لهذا الهدف استخدم البحث أثير 65% من مخزون موري موضوع لاثنين عشر نبات، غير معروفة من اللوز منطقة شمال وسط سيناء وأنواع معروفة من اللوز علماً أن منطقة مطرود لأثنتين عشر نباتات، يتم تحديد الخصائص الوراثية الجزيئية التي تمتلك كل ترتكب وراثياً للاستفادة منها في وضع أطروحة للتنبيات الطبية الموجودة في مصر، وكانت النتائج التي توصل إليها البحث هي كما يلي: دراسة الخصائص الوراثية الجزيئية باستخدام SRAP PCR لاثنين عشر نوع من اللوز. تم استخدام عدد 48 جزءة تحارب طويل وهما ما بين 266-1500 زوج من القواعد، أظهر منها 57 حزمة متعددة المظهر بنسبة 62.2% (14.2%).

وخلال الدراسة: يمكننا الاستنتاج أن الانعال الجغرافي لأي نوع نباتي يؤدي إلى اختلاف في الخصائص الوراثية للكائنات، حيث يبرز أهميتها في مجال حفظ المدن البرية والتي تتطلب معرفة مدى التنوع الوراثي داخل كل نوع وكذلك وضع استراتيجيات لحفظ هذه الأنواع وادخالها في برامج التربية.

الكلمات الإسترشادية: التنوع الوراثي، الترتكب الوراثية، اللوز، تقنية SRAP

المحمومون:

- أ.د. أسامة محمد أحمد
- أ.د. أحمد عبد السلام محمود

أ.د. أسامة محمد أحمد
- أ.د. أسامة محمد أحمد

استاذ الفاكهة، كلية الزراعة، قسم البساتين، جامعة الزقازيق، مصر.
- أ.د. أسامة محمد أحمد

استاذ الفاكهة، كلية الزراعة، قسم البساتين، جامعة الزقازيق، مصر.