

SINAI Journal of Applied Sciences

13-28

RESPONSE OF TOMATO PLANTS TO POTASSIUM RATES AND CALCIUM SOURCES UNDER PLASTIC HOUSE CONDITIONS IN NORTH SINAI

Sara N. Awad^{1*}, E.M. El-Tantawy² and N.M. Easa¹

1. Ins. Hort. Res., Cen. Agric. Res., Cairo, Egypt.

2. Dept. Plant Prod., Fac. Environ. Agric. Sci., Arish Univ., Egypt.

ABSTRACT

Afield experiment was carried out under greenhouse conditions during the winter seasons of 2013-14 and 2014-15 at The Experimental Farm of the Faculty of Environmental Agricultural Sciences, Arish University, North Sinai Governorate, Egypt. The aim of this experiment was to study the effect of different K rates (40, 60 and 80 Kg K₂O/540m²) and two sources of calcium; *viz*, Ca-chelate at 5g l⁻¹(0.5% Ca), Gurenkal at 5 ml l⁻¹ (0.5% Ca) as well as the control treatment (without Ca), with their interactions on growth, and yield of tomato (*Solanum lycopersicon* L.) hybrid V 59-48 under sandy soil conditions using drip irrigation system. A split plot design in three replicates was used. The results showed that treating tomato plants with calcium and potassium had significant and positive effects on almost studied traits of growth, and yield. The highest fresh and dry weight, as well as total yield of tomato plants were achieved when tomato plants fertilized with 80 kg K₂O/540 m² combined with Gurenkalat 5 ml l⁻¹(0.5% Ca).

Key words: Tomato, greenhouse, potassium, calcium sources, fresh weight, marketable yield, and total yield.

INTRODUCTION

Tomato (*Solanum lycopersicum* L.) previously named (*Lycopersicon esculentum* Mill.) is an important vegetable crop in several parts of the world, including the regions suffering from drought and soil salinity, such as the Mediterranean region (Savic *et al.*, 2009; Jensen *et al.*, 2010). Tomato is widely used as salad as well as for cooking purposes. It is well known for its nutritional importance as it is the rich source of nutrients *viz.*, Na, K, Fe, vitamin A and C, and antioxidants especially lycopene and salicylate (Afzal *et al.*, 2013).

Potassium (K) is the most efficient cation for tomato plants and according to several authors, it plays a key role in the

improvement of several quality traits in tomato fruits and in almost all vegetables (Dorais et al., 2001; Chapagain and Wiesman, 2004; Cakmak, 2005). Potassium is one of the essential mineral nutrients in plant nutrition and one of the three which are taken up by roots from the soil solution in its ionic form. It is involved in numerous physiological processes that control plant growth, yield and quality parameters such as sugars, titratible acidity (TA), soluble solids (SS), total soluble solids (TSS), taste, color, firmness and meliness (Wuzhong, 2002; Lester et al., 2005). Potassium is a key nutrient for enhancing productivity of vegetable crops and its content in vegetables has significant positive relationship with quality attributes (Bidariand and Hebsur, 2011).

^{*} Corresponding author: Tel.: +201090195239 E-mail address: saranageb.awad@yahoo.com

Calcium is one of the most important mineral nutrients in greenhouse tomato production. A low supply of calcium to fruit leads to increase tomato fruit cracking (Simon, 1978) and blossom-end rot (Ho *et al.*, 1999). Calcium deficiency in tomato reduces leaf size, causes necrosis of young leaves and yield loss in extreme cases (Adams and El-Gizawy, 1988; Holder and Cockshull, 1990). Calcium foliar spray increased the firmness of tomato fruit measured with and without the skin present (Garcia *et al.*, 1995).

Involved in a wide range of processes in plants including flower induction (Friedman *et al.*, 1989); reduced the incidence of BER (Hao *et al.*, 2000). Calcium is an important nutrient that plays a key role in the structure of cell walls and cell membranes, fruit growth and development (Kadir, 2004); and fruit yield (Hao and Papadopoulos, 2004).

Calcium application increases growth; chlorophyll content, number of fruits per plant in tomato plants (**Rady, 2012**). So, the objectives of this work was to study the effect of potassium levels as soil application and two calcium sources as foliar application and their interactions on tomato plants grown under plastic house in sandy soil at El-Arish region.

MATERIALS AND METHODS

This study included a field study was carried out under greenhouse conditions during the winter growing seasons of 2013-14 and 2014-15 in The Experimental Farm of The Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, Egypt to study the effect of three K rates $(40,60,and 80 \text{ K}_2\text{O kg}/540\text{m}^2)$, added as soil application and two sources of calcium; *viz*, Ca-chelate at 5 g $l^{-1}(0.5\% \text{ Ca})$, Gurenkal at 5 ml $l^{-1}(0.5\%$ Ca) as well as the control treatment (without Ca). with their interactions added as foliar application on tomato growth, and yield of tomato hybrid V 59-48 under sandy soil conditions.

Tomato seeds were sown in trays on 15th October and transplanted 45 days later in both seasons of study. The plot area was 15m² (10 m length and 1.5m wide), planting density was 2.22 plant/m². Drip irrigation system was used, each plot had two dripper lines. The distance between each two dripper lines was 40 cm, the distance between the plants in the same row was 50 cm, while the distance between double dripper lines centers was 150 cm. Potassium was added at three doses per week, while Ca was sprayed every two weeks.

The physical and chemical analyses of the experimental soil and irrigation water are presented in Tables 1 and 2.

This experiment included nine treatments which were the combination between three potassium rates (40,60 and 80 kg K₂O/540 m²) and two calcium source; *i.e.*, Ca-chelate at 5g 1⁻¹ (0.5% Ca), and Gurenkal at 5 ml 1⁻¹ 0.5% Ca) in addition to control treatment. The experimental treatments were randomly arranged in a split-plot design with three replicates, where potassium rates were randomly distributed in the main plots and Ca sources were randomly arranged in the sub plots. The normal agricultural practices were carried out as commonly followed in El-Arish region.

Data Recorded

Vegetative growth parameters

Three plants from each replicate were randomly taken after 70 and 90 days from transplanting and the following data were recorded.

Fresh weight/plant (g)

Fresh weight of root, stem and leaves/ plant were determined as well as total fresh weight/plant was calculated.

Dry weight/plant (g)

Different plant parts of tomato plant sample were oven dried at 70°C until.

Constant weight and the dry weight of root, stem and leaves/plant were determined and total dry weight was calculated.

Property	1 st season (2013-14)	2 nd season (2014-15)
Physical properties		
Texture	Sandy Clay Loam	Sandy Clay Loam
Chemical properties		
рН	8.0	7.6
EC (dSm ⁻¹)	0.7	1.3
Total N (%)	0.03	0.10
Total P (%)	0.26	0.30
Total K (%)	0.62	0.50

Table (1): The physical and chemical properties of the experimental soil*

* Soil samples were taken from the 25 cm of the soil surface.

Table (2): The physical and chemical analyses of irrigation water.

EC	Soluble ions (meq.I ⁻¹)											
			Cations		Anions							
Ppm	Mg ⁻¹	Ca ⁺⁺	Mg ⁺⁺	Na ⁺	\mathbf{K}^{+}	Cľ	HCO ₃ -	CO ₃ -	SO ₄			
3513	44.99	16.56	17.60	35.87	0.27	42.26	6.13	-	21.91			

Yield and its components

Fruits of all pickings tell the end of the experiment were counted and weighed and the following data were calculated:

- a-Total marketable yield number and weight/plant.
- b-Total unmarketable yield number and weight/plant.

Statistical Analysis

The obtained data were subjected to statistical analysis of variance according to **Snedecor and Cochran (1980)**, and means separation was done according to **Duncan's Multiple Range Test (1955)**.

RESULTS AND DISCUSSION

Fresh Weight

Effect of potassium rates

Results in Table 3 show that, in the first season, application of potassium had no significant effect on fresh weight of leaves, fresh weight of stem, and fresh weight of roots, except fresh weight of leaves at 70 DAT and total fresh weight at 70 and 90 DAT, where application of potassium at a rate of 80 kg $K_2O/540m^2$ had a significant effect and recorded the highest value of total fresh weight/plant in both seasons. In the second season, there were significant effects for potassium soil application on all

studied traits, except fresh weight of roots at 90 DAT which did not reach 5% level of probability. Application of 80 kg K₂O /540 m² recorded the maximum values for all studied traits of plant fresh weight; viz., leaves, stem, roots, and total fresh weight of plant without significant difference with application of 60 kg $K_2O/540$ m² at 70 DAT on fresh weight of roots. These results are in agreement with those reported by Saida et al. (2014) and Ul-Hassan et al. (2016) who found that potassium nutrition significantly enhanced growth and biomass production of tomato plants. It could be concluded that soil application of 80 kg $K_2O/540m^2$ was the superior treatment for increasing fresh weight of tomato plant in the second season.

Effect of calcium sources

Results in Table 3 indicate that there were no significant differences among calcium foliar application treatments on fresh weight of tomato plant in the first season, and fresh weight of leaves as well as fresh weight of roots at 90 DAT in the second one. However, spraying tomato plant with Gurenkal (5 ml 1^{-1}) recorded the highest significant values of fresh weight of leaves, stem, roots as well as total fresh weight of plant at 70 and 90 DAT, followed by spraying with Ca-chelate $(5 \text{ g } 1^{-1})$ in the second season. Check treatment (without Ca) recorded the lowest values of plant fresh weight in both seasons. These results are in harmony with the findings of Lopez and Satti (1996) and Lolaei (2012) who found that increasing Ca^{2+} concentration in leaves linearly increased total vegetative biomass. It was reported that increasing calcium rates caused positive gradual increase in tomato growth (Rady, 2012).

It could be said that spraying tomato plants with Gurenkal (5 ml l^{-1}) as calcium source, followed by spraying with Ca-chelate (5g l^{-1}) were the superior treatments for enhancing plant fresh weight.

Effect of interaction between potassium and calcium

It is clear from the results in Table 4 that there were significant interaction effects between calcium and potassium on all studied tomato plant fresh weight traits in both seasons, except fresh weight of leaves at 70 DAT, fresh weight of roots at 70 and 90 DAT, total fresh weight at 90 DAT in the first season. However, application of 80 kg $K_2O/540$ m² + Gurenkal had the maximum value of fresh weight; viz., leaves, stem, and total fresh weight of plant after 70 or 90 DAT, with no significant differences with 80 kg $K_2O/540m^2$ +Ca-chelateor without Ca in the first season, while in the second season application of 80 kg K₂O/540 m² + Gurenkal recorded the highest values of the pervious studied parameters.

It could be concluded that the best interaction treatments for increasing fresh weight of different parts of tomato plants was 80kg K₂O/540 m² + spraying with Gurenkal (5ml l⁻¹), followed by application of 80kg K₂O /540m² + Ca- chelate (5 g l⁻¹).

Dry Weight

Effect of potassium rates

Results in Table 5 illustrate significant effects for K_2O on dry weight of tomato plants, except dry weight of stem in the first season and dry weight of root in the second one. The same results reveal that application of K_2O at a rate of 80kg $K_2O/540m^2$ was the superior treatment which increased dry weight of stem, root and total dry weight of plant in both seasons.

The increment in total dry weight of plant, especially in the second season may be attributed to the increments in dry weight of leaves, stem and roots. These results are in agreement with those reported by **Wuzhong (2002), El-Nemr** *et al.* **(2012), Amjad** *et al.* **(2014) and Ul-Hassan** *et al.* **(2016)** who found a positive response to potassium concentration on dry weight of tomato plant.

Table (3): Effect of potassium rates and calcium source on fresh weight of tomato plants (g) during 2013/2014 and 2014/2015 seasons.

Parameter		Fresh weight (g)/plant														
-	Le	aves		Stem	I	Roots	Т	otal	Leaves		Stem		Roots		Т	otal
-	Days after transplanting															
Treatment	70	9) 7() 90	70	90	70	90	70	90	70	90	70	90	70	90
Effect of potassiu	m rates															
K ₂ O(kg) /540m ²)]	First seas	on (2013	/2014)				Seco	nd seaso	n (2014/2	015)		
40	299.0b	374.5a	194.2 a	210.7 a	88.61 a	93.36 a	581.81b	678.56 c	293.7 c	341.4 c	142.7 c	177.2 c	96.2 b	116.3a	532.6a	620.1c
60	304.1b	386.7a	186.7 a	224.3 a	89.17 a	92.43 a	579.97 b	703.43 b	356.7 b	382.0 b	163.7 b	207.9 b	112.8ab	118.9a	633.2a	708.7b
80	335.1a	392.0a	202.4 a	251.9 a	90.50 a	92.65 a	628.00 a	736.55 a	422.7 a	425.6 a	194.4 a	234.7 a	120.0a	129.8a	740.4a	790.1 a
Effect of calcium	source															
Without Ca	314.6a	385.2a	189.3 a	225.7 a	88.59 a	91.00 a	592.5 a	701.9 a	323.6 b	377.7 a	152.7 b	198.4 b	94.3 b	124.5a	570.6a	690.4b
Ca-chelate*	332.2a	381.5a	199.3 a	226.5 a	89.77 a	93.83 a	621.2 a	701.8 a	370.1 a	371.8 a	171.4 a	202.9 b	115.6a	119.8a	661.9 a	694.5b
Gurenkal*	311.5a	386.5a	194.7 a	234.8 a	89.93 a	93.6 a	596.1 a	714.9 a	379.4 a	399.4 a	176.6 a	218.4 a	118.9a	120.7a	637.7 a	734.0a

Values having the same alphabetical letter(s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

*Ca-chelate and Gurenkal were used at a rate of 5g l^{-1} and 5ml l^{-1} , respectively.

	Parameter	F.W o	of leaves(g)	F.W of ster	n(g) F.	W of roots(g)	Т	otal fresh weig	h /plant(g)
					Days	s after transpla	anting		
Freatment		70	90	70	90	70	90	70	90
K ₂ O (kg) /54	0m ² X Ca sources			Effec	t of potassium	rates X calciu	m sources		
					First Seaso	on (2013/2014)			
40	+ Without Ca	308.9cd	372.8a	184.1bc	213.8c	85.46a	91.01a	578.4cd	677.6a
40	+ Ca-chelate*	314.6cd	374.7a	201.3a	202.9c	89.05a	95.10a	604.9bc	672.7a
40	+ Gurenkal*	273.6e	376.2a	197.2ab	215.5c	91.33a	93.99a	562.1d	685.7a
60	+ Without Ca	286.6de	380.6a	181.3c	210.7c	89.40a	88.88a	557.3d	680.2a
60	+ Ca-chelate*	324.6bc	383.0a	192.3abc	205.9c	88.08a	95.12a	604.9bc	684.0a
60	+ Gurenkal*	301.2cde	396.5a	186.5bc	256.3ab	90.04a	93.28a	577.7cd	746.1a
80	+ Without Ca	348.4ab	402.4a	202.5a	252.5ab	90.90a	93.12a	641.8ab	748.0a
80	+ Ca-chelate*	357.2a	386.7a	204.2a	270.7a	92.20a	91.28a	653.6a	696.2a
80	+ Gurenkal*	359.7a	386.8a	200.4a	232.5bc	88.41a	93.54a	596.1a	712.8a
K ₂ O(kg) /54) m ² X Ca sources			Second	d Season (2014/	(2015)			
40	+ Without Ca	268.8d	335.0d	142.8de	164.2f	83.00e	140.1a	494.7e	594.9e
40	+ Ca-chelate*	314.0c	343.5d	148.3d	177.9ef	105.8cd	106.8bc	568.2d	628.2de
40	+ Gurenkal*	298.3cd	345.7d	137.0ef	189.5de	99.67d	101.9c	535.0de	637.1cd
60	+ Without Ca	280.8cd	362.2cd	128.8f	195.4cde	101.0d	114.5abc	510.7e	672.0c
60	+ Ca-chelate*	376.5b	382.5bc	170.8c	211.7bcd	114.5bc	119.4abc	661.8c	713.6b
60	+ Gurenkal*	412.7a	401.3b	191.3ab	216.5bc	123.0ab	122.7abc	727.0ab	740.5b
80	+ Without Ca	421.0a	435.9a	186.5b	235.6ab	99.00d	118.8abc	706.5b	804.2a
80	+ Ca-chelate*	419.8a	389.5bc	195.2ab	219.2bc	126.7ab	133.1ab	755.8a	741.8b
80	+ Gurenkal*	427.2a	451.3a	201.7a	249.4a	134.1a	137.6a	759.0a	824.4a

 Table (4): Effect of interaction between potassium rates and calcium source on fresh weight of tomato plants during 2013/2014 and 2014/2015 seasons.

Values having the same alphabetical letter(s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test. *Ca-chelate and Gurenkal were used at a rate of 5g l^{-1} and 5ml l^{-1} , respectively.

Parameter		Dry weight (g)/plant															
	Leaves	Leaves			Stem Roots			Total Leaves		ives	Stem		Roots		I	Total	
	Days after transplanting																
Treatment	70	90	70	90	70	90	70	90	70	90	70	90	70	90	70	90	
						Eff	ect of po	tassium r	ates								
		First s	eason (2	2013/2	014)		Second season (2014/2015)										
K ₂ O(kg) /540m ²																	
40	41.43c	45.43b	28.15	a 29.2	6a 23.91a	25.56b	93.49a	100.25b	44.16b	45.89b	25.29c	33.09c	22.62b	27.18a	92.07c	106.10b	
60	43.84b	46.60b	26.37	a 28.3	7a 23.22a	26.79a	93.43a	101.78b	48.69a	49.19b	28.96b	40.76b	27.07a	26.94a	104.71 b	116.89b	
80	50.39a	53.62a	25.45	a 29.3	4a 23.57a	26.82a	99.41a	109.78a	50.73a	62.96a	32.52a	43.30a	29.61a	32.06a	112.87 a	138.31a	
		Ca so	urces				Effect of calcium source										
without Ca	43.38b	46.60a	26.62	a 28.6	2a 22.82a	25.91a	92.82a	101.10a	45.86b	48.56b	27.92b	37.58b	23.52b	27.43a	97.30 c	113.57b	
Ca-chelate*	45.78ab	49.33a	26.21	a 28.2	1a 24.92a	26.54a	96.91a	104.08a	47.26b	54.12ab	27.91b	38.63ab	27.14a	29.20a	102.31 b	121.96a	
Gurenkal*	46.51a	49.73a	27.15	a 30.1	5a 22.95a	26.73a	96.61a	106.60a	50.47a	55.36a	30.93 a	40.93a	28.63a	29.54a	110.03 a	125.83a	

Table (5): Effect of potassium rates and calcium source on dry weight of tomato plants during 2013/2014 and 2014/2015 seasons.

Values having the same alphabetical letter(s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

*Ca-chelate and Gurenkal were used at a rate of 5g l^{-1} and 5ml l^{-1} , respectively.

Effect of calcium sources

Results in Table 5 show insignificant effects due to application of calcium on all dry weight traits in the first season expressed in dry weight of roots, stem, leaves and consequently total dry weight of plant at both studied sampling dates, except dry weight of leaves after 70 DAT, while in the second season application of Gurenkal gave the maximum values of the studied parameters, followed by Ca- chelate.

The increments in total dry weight at 70 and 90 DAT may be owe to the increase in dry weight of different plant parts (roots, stem, leaves). These results are in a good line with those reported by **Hao and Papadopoulos (2004), and Kazemi(2013).**

Effect of interaction between potassium and calcium

It is clear from the results in Table 6 that the interaction among potassium and calcium treatments had significant effects on all studied parameters, except dry weight of stem at 70 and 90 DAT and dry weight of roots at 70 DAT in the first season. The interaction between application of 80 kg $K_2O/540m^2$ and all sources of Ca (Gurenkal: Ca-chelate: without Ca) increased dry weight of leaves at 70 and 90 DAT and dry weight of roots at 90 DAT that led to increase in total dry weight of plant at 70 and 90 DAT in the first season.

In the second season, the interaction between application of 80 kg $K_2O/540m^2$ + Gurenkal was the best interaction treatment which led to increase the dry weight of leaves at 70 and 90 DAT and dry weight of stem at 70 DAT as well as dry weight of roots at 90 DAT. The increase in these parameters led to increase in total dry weight of tomato plant.

Yield and Its Components

Marketable and unmarketable yield

Effect of potassium rates

Results in Table 7 reveal that application of potassium had significant effects on total marketable yield/plant, total yield/540 m²in both seasons, and fruit weight of unmarketable yield in the first season, but it did not reflect any significant effects on number of unmarketable fruits in both seasons. Application of 80 kg K₂O/540 m² was the best treatment for increasing the previous studied yield parameters.

The increment in total yield may be owe to the increment in total yield of plant expressed in fruits number and the other yield components. The increase in plant yield may be due to the increases in photosynthetic pigments due to application of K_2O which led to increase in photo assimilation expressed in fresh and dry weight of different parts of tomato plants and consequently increase in yield per plant and per a single greenhouse (540m²).

It could be concluded that both total yield per greenhouse and unmarketable fruit weight had the highest values with application of 80 kg $K_2O/540$ m² as soil application.

Effect of calcium sources

Results in Table (7) illustrate the effect of Ca sources on total marketable yield and unmarketable yield /a single greenhouse $(540m^2)$. The same results show that application of Ca in different sources had no significant effect on the previous parameters in the second season and on fruit weight of unmarketable yield in the first season. Application of Ca as Gurenkal at concentration of 5ml l⁻¹ as foliar spray increased the components of total vield/plant (numbers and weight of fruits) which led to an increase in total yield/a greenhouse in the first season.

	Davamatar	D.W of le	aves(g)	D.W of stem(g	g)	D.W of roo	ots(g)	Total Dry	weigh(g)					
Treatment	Parameter				Days after tr	ansplanting								
Treatment		70	90	70	90	70	90	70	90					
				Effect of po	tassium rates	X calcium so	urces							
K ₂ O(kg) /54	40m ² X Ca sources	First season (2013/2014)												
40	+ without Ca	41.75c	45.08cd	27.99a	29.32a	23.11a	26.45ab	92.85bc	100.9def					
40	+ Ca-chelate*	41.26c	45.93cd	27.37a	28.37a	25.42a	24.21c	94.05bc	98.51ef					
40	+ Gurenkal*	41.29c	45.29cd	29.09a	30.09a	23.20a	26.00abc	93.58bc	101.4c-f					
60	+ without Ca	40.76c	43.09d	25.46a	26.12a	23.14a	25.23bc	89.36c	94.45f					
60	+ Ca-chelate*	45.12b	48.45bc	25.91a	27.91a	25.00a	27.63a	96.03ab	104.0b-e					
60	+ Gurenkal*	45.63b	48.30bc	27.75a	31.08a	21.52a	27.52a	94.90abc	106.9a-d					
80	+ without Ca	47.63b	51.63ab	26.41a	30.41a	22.22a	26.04abc	96.26ab	108.1abc					
80	+ Ca-chelate*	50.96a	53.62a	25.34a	28.34a	24.34a	27.77a	100.6a	109.7ab					
80	+ Gurenkal*	52.60a	55.60a	24.61a	29.28a	24.14a	26.66ab	101.3a	111.5a					
K ₂ O(kg) /54	40m ² X Ca sources	Second season (2014/2015)												
40	+ without Ca	43.04f	46.20cd	25.70d	30.07f	19.73f	30.10bc	88.47f	106.4d					
40	+ Ca-chelate*	43.80ef	47.20cd	25.30d	32.93ef	24.27e	26.03c	93.37e	106.2d					
40	+ Gurenkal*	45.63de	44.27d	24.87d	36.27d	23.87e	25.40c	94.37e	105.9d					
60	+ without Ca	45.23ef	48.00cd	25.23d	35.47de	22.43e	26.30c	92.90e	109.8d					
60	+ Ca-chelate*	50.10bc	51.50c	31.70bc	43.17b	26.27d	28.40bc	108.1cd	123.1c					
60	+ Gurenkal*	50.73b	48.07cd	29.93c	43.63b	32.50a	26.13c	113.2b	117.8c					
80	+ without Ca	49.30bc	51.47c	32.83b	47.20a	28.40c	25.90c	110.5bc	124.6c					
80	+ Ca-chelate*	47.87cd	63.67b	26.73d	39.80c	30.90ab	33.17ab	105.5d	136.6b					
80	+ Gurenkal*	55.03a	73.73a	38.00a	42.90b	29.53bc	37.10a	122.6a	153.7a					

 Table (6): Effect of interaction between potassium rates and calcium sources on dry weight of tomato plants during 2013/2014 and 2014/2015 seasons.

Values having the same alphabetical letter(s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

*Ca-chelate and Gurenkal were used at a rate of 5g I^{-1} and 5ml I^{-1} , respectively.

Our results are in agreement with those of other researcher where many efforts owed the increment in yield and its components due to foliar application of calcium to the vital role of calcium as one of the essential macroelements necessary for plant growth. It is used for maintenance of the plant cell structure and increasing resistance to environmental stresses (salinity, drought, chilling, heat, ... *etc.*) (Mestre *et al.*, 2012).

It is also appear to play an essential role in the inhibition of abscission and delays leaf senescence. plays а compratively role in enzyme activation (Mengel and Kirkby, **1978**); and stimulatethe accumulation of phytoalexin, which implicated the defense in mechanisms of plants against fungal attacks (Zook et al., 1987; Aghofack- Nguemeziet al., 2014) and consequantly led to an increase in chloroohyll content, laef area / plant, photo-assimilation and plant growth. The increment in plant growth reflected positively on increasing number of flowers/cluster, number of fruits/cluster, number of fruits/plant, fruits weight and this in turn increase yield/ha. (Aghofack-Nguemezi and Tatchago, 2010; Mestre et al., 2012; Elbeik, 2014; Ilyas et al., 2014). On the other hand, Rab and Haq (2012) found that there were no significant differences between control and foliar application of CaCl₂ on tomato fruit weight, and yield/fed.

It could be concluded that application of Ca as Gurenkal increased fruits number and weight of marketable yield/plant and increased total yield per a single greenhouse $(540m^2)$.

Effect of interaction between potassium and calcium

Results in Table 8 indicate that there were significant effects for the interaction between Ca and K on all studied traits in both seasons, except unmarketable fruits weight/plant in the first season. The same results show that the interaction between application of 80 kg $K_2O/540 m^2$ + Gurenkal (as a source of Ca) was the best interaction treatment for increasing total yield/plant and reducing unmarketable yield/plant leading to an increment in yield/greenhouse in both seasons. The increment in total marketable yield/plant may be owe to decreasing unmarketable yield and the effect of K and Ca on photosynthetic pigments which increased the photo-assimilation process and increase in fresh and dry weight of different parts of tomato plant (Tables 4 and 5).

It could be concluded that the best interaction treatment for increasing total marketable yield/plant and per greenhouse as well as decreasing unmarketable yield of tomato plants was application of 80 kg $K_2O/540 \text{ m}^2$ +Gurenkal as a source of Ca foliar application.

REFERENCES

- Adams, P. and El-Gizawy, A.M. (1988). Effect of calcium stress on the calcium status of tomatoes grown in NFT. Act. Hort., 222: 15–22.
- Afzal, I.; Munir, F.; Ayub, C.M.; Basra, S.M.A.; Hameed, A. and Shah, F. (2013). Ethanol priming: an effective approach to enhance germination and seedling development by improving antioxidant system in tomato seeds. Acta Sci. Pol., Hortorum Cultus, 12: 129–137.
- Aghofack-Nguemezi, J. and Tatchago, V. (2010). Effect of fertilization calcium and/or magnesium on the growth, development of plant and the quality of tomato fruits in the Western Highlands of Cameroon., J. Agric. Res., 5(10): 821-831.
- Aghofack-Nguemezi, J.; Noumbo, G.T. and Nkumbe, C.N. (2014). Influence of calcium and magnesium based fertilizers on fungal diseases, plant growth parameters and fruit quality of three varieties of tomato (*Solanum lycopersicum*). J. Sci. Technol., 34 (1): 9-20.

Parameter		rketable /plant	Unmarketable yield/ plant		Total yield	Total marke /pla	e	Unmarke p ^j	Total yield	
Treatment	Number of fruits	weight of fruits (g)	Number of fruits	weight of fruits (g)	ton/ 540m ²	Number of fruits	weight of fruits (g)	Number of fruits	weight of fruits (g)	ton/ 540m ²
				Eff	ect of potassiun	n rates				
		First sea	nson (2013/20)14)						
K ₂ O(kg) /540m ²	2									
40	80.19b	5040b	6.05a	193.8b	6.046b	79.78b	5035c	2.927a	123.7a	6.042c
60	80.59b	5094b	6.76a	264.1a	6.112b	92.04ab	5846b	3.703a	163.8a	7.015b
80	92.22a	6220a	7.00a	267.1a	7.467a	95.81a	6218a	2.591a	99.50a	7.461a
		Ca se	ources			Eff	ect of calcium s	ources		
Without Ca	79.06b	5083b	7.69a	288.3a	6.097b	89.82a	5537a	3.444a	114.9a	6.644a
Ca-chelate*	80.56b	5478ab	6.12b	222.1a	6.574ab	89.48a	5756a	3.371a	156.9a	6.907a
Gurenkal*	93.34a	5795a	6.01b	214.5a	6.953a	88.33a	5806a	2.406a	115.2a	6.967a

Table (7): Effect of potassium rates and calcium sources on total yield of tomato plants during 2013/2014 and 2014/2015 seasons.

Values having the same alphabetical letter(s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

*Ca-chelate and Gurenkal were used at a rate of 5g I^{-1} and 5ml I^{-1} , respectively.

	Parameter	Total marketable yield /plant			Unmarketable yield /plant		Total marketable yield /plant		Unmarketable yield /plant				
Treatment		Number of fruits	weight of fruits (g)	Number of fruits	weight of fruits (g)	ton/ 540m ²	Number of fruits	weight of fruits (g)	Number of fruits	weight of fruits (g)	Total yield ton/ 540m ²		
				Effect of	of potassium rates X Calcium sources								
K ₂ O(kg) /540m ² X Ca First season (2013/2014)				Second season (2014/2015)									
40	+ without Ca	78.62d	4915ef	7.38ab	223.2a	5.8928ef	76.22 c	4918e	3.557abc	126.3b	5.901e		
40	+ Ca-chelate*	73.33d	5155e	5.65de	207.5a	6.1872de	86.11bc	5274de	2.447c	132.1b	6.329de		
40	+ Gurenkal*	88.45bc	5049e	5.12e	150.6a	6.0592e	77.00c	4913e	2.777bc	112.7b	5.896e		
60	+ without Ca	76.81d	4584f	8.18a	342.1a	5.4992f	91.11ab	5650cd	4.110ab	109.0b	6.780cd		
60	+ Ca-chelate*	76.58d	5104e	5.76de	214.5a	6.1232e	90.00ab	5819bc	4.780a	236.3a	6.983bc		
60	+ Gurenkal*	88.40bc	5596d	6.33cd	235.7a	6.7152cd	95.00ab	6069abc	2.220c	145.9b	7.283abc		
80	+ without Ca	81.71cd	5748c	7.50ab	299.7a	6.9008bc	102.1a	6043abc	2.667bc	109.3b	7.251abc		
80	+ Ca-chelate*	91.76b	6176b	6.93bc	244.4a	7.4128b	92.33ab	6174ab	2.887bc	102.2b	7.409ab		
80	+ Gurenkal*	103.18a	6737a	6.58bcd	257.3a	8.0848a	93.00ab	6436 a	2.220 c	86.94b	7.723a		

 Table (8): Effect of interaction between potassium rates and calcium sources on total yield of tomato plants during 2013/2014 and 2014/2015 seasons.

Values having the same alphabetical letter(s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

*Ca-chelate and Gurenkal were used at a rate of 5g l⁻¹ and 5ml l⁻¹, respectively.

- Amjad, M.; Akhtar, J.; Anwar, M.; Imran, S.h.; and Jacobsen, S. (2014). Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk. J. Biol., 38: 208-218.
- **Bidariand, B.I. and Hebsur, N.S. (2011).** Potassium in relation to yield and quality of selected vegetable crops, Karnataka J. Agric. Sci., 24(1):55-59.
- Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutrition. Soil Sci., 168: 521-530.
- Chapagain, B.P. and Wiesman, Z. (2004). Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Sci. Hort., 99:279-288.
- **Dorais, M.; Papadopoulos, A.P. and Gosselin, A. (2001).** Greenhouse tomato fruit quality. Hort. Rev. Amer. Soc. Hort. Sci., 26: 239-319.
- **Duncan, D.B. (1955).** Multiple Range and Multiple F-test. Biometrics, 11: 1-42.
- Elbeik, A.K.M. (2014). Effect of calcium spray on growth, yield, blossom-end rot occurrence and storability of tomatoes under calcareous soil conditions in delta of El-Arish Valley. Zagazig J. Agric. Res., 41 (2): 257-271.
- El-Nemr, M.A.; Abd El-Baky, M.M.H.; Salman, S.R. and El-Tohamy, W.A. (2012). Effect of different potassium levels on the growth, yield and quality of tomato grown in sand-ponic culture. Australian J. Basic and Appl. Sci., 6(3): 779-784.
- Friedman, H; Goldsmidt, E.E. and Halevy, A.H. (1989). Involvement of Calcium in the Photoperiodic flower induction process of Pharbitis nil. Plant Physiol., 89: 530-534.

- Garcia, J.M.; Ballesteros, J.M. and Albi, M.A. (1995). Effect of foliar application of CaCl2 on tomato stored at different temperatures. J. Agric. Food chem., 43: 9-12.
- Hao, X. and Papadopoulos, A.P. (2004). Effect of calcium and magnesium on plant growth, biomass partitioning, and fruit yield of winter greenhouse tomato. Hort. Sci., 39(3): 512-515.
- Hao, X.; Papadopoulos, A.P.; Dorais, M.; Ehret, D.L.; Turcotte, G. and Gosselin, A. (2000). Improving tomato fruit quality by raising the EC of NFT nutrient solution and calcium spraing: effect of growth, photosynthesis, yield and quality. Acta. Hort. 511: 213–221.
- Ho, L.C.; Hand, D.J. and Fussell, M. (1999). Improvement of tomato fruit quality by calcium nutrition. Acta. Hort., 481: 463-468.
- Holder, R. and Cockshull, K.E. (1990). Effect of humidity on the growth and yield of glasshouse tomatoes. J. Hort. Sci. 65: 31-39.
- Ilyas, M.; Ayub, G.; Hussain, Z.; Ahmad, M.; Bibi, B.; Rashid, A. and Luqman, M. (2014). Response of tomato to different levels of calcium and magnesium concentration. World Appl. Sci. J., 31(9): 1560-1564.
- Jensen, C.R.; Battilani, A.; Plauborg, F.; Psarras, G.; Chartzoulakis, K.; Janowiak, F.; Stikic, R.; Jovanovic, Z.; Li, G. and Qi, X. (2010). Deficit irrigation based on drought tolerance and root signaling in potatoes and tomatoes. Agric. Water Manage. 98: 403-413.
- Kadir, S.A. (2004). Fruit quality at harvest of 'Jonathan' apple treated with foliar applied calcium chloride. J. Plant Nutrition, 27: 1991-2006.
- **Kazemi, M. (2013).** Vegetative and reproductive growth of tomato plants affected by calcium and humic acid. Bull. Environ. Pharmacol. Life Sci., (11): 24-29.

- Lester, G.E.; Jifon, J.L. and Rogers, G. (2005). Impact of potassium nutrition on food quality of fruits and vegetable. J. Ame. Soc. Hort. Sci., 130(1): 649-653.
- Lolaei, A. (2012). Effect of calcium chloride on growth and yield of tomato under sodium chloride stress. J. Ornamental Hort. Plants, 2(3): 155-160.
- Lopez, M.V. and Satti, S.M.E. (1996). Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci., 114: 19-27.
- Mengel, K. and Kirkby, E. (1978). Principles of Plant Nutrition. 1st Ed., Int. Potash Inst., Worblaufen-Bern, Switzerland.
- Mestre, T.C.; Garcia-Sanchez, F.; Rubio, F.; Martinez, V. and Rivero, R.M. (2012). Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. J. Plant Physiol., 169: 1719-1727.
- Rab, A. and Haq, I. (2012). Foliar application of calcium chloride and borax influences plant growth, yield, and quality of tomato (*Lycopersicon esculentum* Mill.) fruit. Turk J. Agric., 36: 695-701.
- Rady, M.M. (2012). A novel organomineral fertilizer can mitigate salinity stress effects for tomato production on reclaimed saline soil. South Afr. J. Bot., 81: 8-14.
- Saida, C.; Houria, B.; Mébarek, B. (2014). Interactive effects of salinity and

potassium on physio-morphological traits of tomato (*Lycopersicon esculentum* Mill.; var: heintz). Agric. Biol. J. N. Ame., 5 (3): 135-143.

- Savic, S.; Liu, F.; Stikic, R.; Jacobsen,
 S.E.; Jensen, C.R. and Jovanovic, Z.
 (2009). Comparative effects of partial root zone drying and deficit irrigation on growth and physiology of tomato plants. Arch Biol. Sci. Belgrade, 61: 801-810.
- Simon, E.W. (1978). The symptoms of calcium deficiency in phosphide as an alternative to methyl bromide in tomato crops. Scientia Hort., 150: 54-58.
- Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods 7th Ed. Iowa State Univ. Press. Ames. Iowa, USA.
- Ul-Hassan, Z.; Kubar, K.A.; Chhajro, M.A.; Kandhro, M.N.; Jamro, G.M.; Talpur, K.H. and Talpur, N. (2016). Response of tomato (*Lycopersicon esculentum* L.) at varying levels of soil applied potassium. J. Basic & Applied Sci., 12: 198-201.
- **Wuzhong, N. (2002).** Yield and quality of fruits of solanaceous crops as affected by potassium fertilization. Better Crops International, 16(1): 6-8.
- Zook, M.N.; Rush, J.S. and Kuc, J.C. (1987). A role for Ca^{2+} in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. Plant Physiol., 84: 520-525.

الملخص العربي استجابة نباتات الطماطم لمعدلات البوتاسيوم ومصادر الكالسيوم تحت ظروف الصوب البلاستيكية في شمال سيناء سارة نجيب عوض'، السيد محمد الطنطاوي'، ونظير محمد عيسى' ١. قسم الزراعة المحمية، مركز البحوث الزراعية، القاهرة، مصر. ٢. قسم الإنتاج النباتي، كلية العلوم الزراعية البيئية، جامعة العريش، مصر.

أجريت تجربة حقلية تحت الصوب البلاستيكية في الموسم الشتوي لعامي ٢٠١٤، و٢٠١٥ في المزرعة البحثية لكلية العلوم الزراعية البيئية، جامعة العريش. كان الهدف هو دراسة تأثير التسميد بمعلات مختلفة من البوتاسيوم المضافة للتربة (٢٠، ٢٠، و٨كجم/٢٥٥٢) ومصادر للتسميد رشاً بالكالسيوم هي: كنترول (بدون كالسيوم)، والكالسيوم المخلبي بمعدل مجم/لتر (٥% كالسيوم)، وجيرنكال بمعدل ٥مل/لتر (٥% كالسيوم) على نمو، ومحصول الطماطم، هجين" في ٥٩-٤٦" تحت ظروف التربة الرملية باستخدام نظام الري بالتنقيط، استخدم نظام القطع المنشقة مرة واحدة في ثلاث مكررات، وأوضحت النتائج أن معاملة نبات الطماطم بكل من البوتاسيوم و والكالسيوم كان لها تأثير معنوي إيجابي على معظم صفات النمو الخضري والمحصول تحقق أعلى وزن طازج للنبات وأعلى محصول للطماطم عند تسميد النباتات بمعدل مكجم/٢٥٠ م + الرش بالجيرنكال بمعدل ٥مل/لتر (٥% كالسيوم) على نمو، ومحصول الطماطم، هجين المي مكررات، وأوضحت النتائج أن معاملة نبات الطماطم بكل من البوتاسيوم و الكالسيوم كان لها تأثير معنوي إيجابي على معظم صفات النمو الخضري والمحصول تحقق أعلى وزن طازج للنبات وأعلى محصول للطماطم عند تسميد النباتات بمعدل النمو الخضري والمحصول معدل معدل ٥مل لتر (٥% كالسيوم)، وتلاه التشير معنوي إيجابي على معظم صفات العلو الخضري والمحصول معلمة نبات الطماطم بكل من البوتاسيوم والكالسيوم كان لها تأثير معنوي إيجابي على معظم صفات وأوضحت النتائج أن معاملة نبات الطماطم بكل من البوتاسيوم والكالسيوم كان لها تأثير معنوي إيجابي على معظم صفات المعر الخري و المحصول تحقق أعلى وزن طاز ج للنبات وأعلى محصول للطماطم عند تسميد النباتات بمعدل التحرم معنوي إلى معدل معارك المعدل معان إلى المور المور المور المور الماطم عند تسميد النباتات المعدا

الكلمات الاسترشادية: الطماطم، الصوب البلاستيكية، مصادر البوتاسيوم والكالسيوم، الوزن الطازج، المحصول الكلي.

المحكميون:

أ.د. فاروق عبد السلام العايدي

۲. أ.د. حامــد عريشــــة

أستاذ الخضر المتفرغ، كلية الزراعة، جامعة كفر الشيخ، مصر. أستاذ الخضر المتفرغ، كلية الزراعة، جامعة الزقازيق، مصر.

Awad, *et al*.